📄 average_precision.m
字号:
function Average_Precision=Average_precision(Outputs,test_target)
%Computing the average precision
%Outputs: the predicted outputs of the classifier, the output of the ith instance for the jth class is stored in Outputs(j,i)
%test_target: the actual labels of the test instances, if the ith instance belong to the jth class, test_target(j,i)=1, otherwise test_target(j,i)=-1
[num_class,num_instance]=size(Outputs);
temp_Outputs=[];
temp_test_target=[];
for i=1:num_instance
temp=test_target(:,i);
if((sum(temp)~=num_class)&(sum(temp)~=-num_class))
temp_Outputs=[temp_Outputs,Outputs(:,i)];
temp_test_target=[temp_test_target,temp];
end
end
Outputs=temp_Outputs;
test_target=temp_test_target;
[num_class,num_instance]=size(Outputs);
Label=cell(num_instance,1);
not_Label=cell(num_instance,1);
Label_size=zeros(1,num_instance);
for i=1:num_instance
temp=test_target(:,i);
Label_size(1,i)=sum(temp==ones(num_class,1));
for j=1:num_class
if(temp(j)==1)
Label{i,1}=[Label{i,1},j];
else
not_Label{i,1}=[not_Label{i,1},j];
end
end
end
aveprec=0;
for i=1:num_instance
temp=Outputs(:,i);
[tempvalue,index]=sort(temp);
indicator=zeros(1,num_class);
for m=1:Label_size(i)
[tempvalue,loc]=ismember(Label{i,1}(m),index);
indicator(1,loc)=1;
end
summary=0;
for m=1:Label_size(i)
[tempvalue,loc]=ismember(Label{i,1}(m),index);
summary=summary+sum(indicator(loc:num_class))/(num_class-loc+1);
end
ap_binary(i)=summary/Label_size(i);
aveprec=aveprec+summary/Label_size(i);
end
Average_Precision=aveprec/num_instance;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -