📄 svmmatlab5.txt
字号:
3,用SVM做分类的使用方法
1)在matlab中输入必要的参数:X,Y,ker,C,p1,p2
我做的测试中取的数据为:
n = 50;
randn('state',6);
x1 = randn(2,n)
y1 = ones(1,n);
x2 = 5+randn(2,n);
y2 = -ones(1,n);
figure;
plot(x1(1,:),x1(2,:),'bx',x2(1,:),x2(2,:),'k.');
axis([-3 8 -3 8]);
title('C-SVC')
hold on;
X1 = [x1,x2];
Y1 = [y1,y2];
X=X1';
Y=Y1';
其中,X是100*2的矩阵,Y是100*1的矩阵
C=Inf;
ker='linear';
global p1 p2
p1=3;
p2=1;
然后,在matlab中输入:[nsv alpha bias] = svc(X,Y,ker,C),回车之后,会显示:
Support Vector Classification
_____________________________
Constructing ...
Optimising ...
Execution time: 1.9 seconds
Status : OPTIMAL_SOLUTION
|w0|^2 : 0.418414
Margin : 3.091912
Sum alpha : 0.418414
Support Vectors : 3 (3.0%)
nsv =
3
alpha =
0.0000
0.0000
0.0000
0.0000
0.0000
2)输入预测函数,可以得到与预想的分类结果进行比较.
输入:predictedY = svcoutput(X,Y,X,ker,alpha,bias),回车后得到:
predictedY =
1
1
1
1
1
1
1
1
1
3)画图
输入:svcplot(X,Y,ker,alpha,bias),回车
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -