📄 lpc.c
字号:
/* ITU-T G.729A Speech Coder ANSI-C Source Code Version 1.1 Last modified: September 1996 Copyright (c) 1996, AT&T, France Telecom, NTT, Universite de Sherbrooke All rights reserved.*//*-----------------------------------------------------* * Function Autocorr() * * * * Compute autocorrelations of signal with windowing * * * *-----------------------------------------------------*/#include "typedef.h"#include "basic_op.h"#include "oper_32b.h"#include "ld8a.h"#include "tab_ld8a.h"void Autocorr( Word16 x[], /* (i) : Input signal */ Word16 m, /* (i) : LPC order */ Word16 r_h[], /* (o) : Autocorrelations (msb) */ Word16 r_l[] /* (o) : Autocorrelations (lsb) */){ Word16 i, j, norm; Word16 y[L_WINDOW]; Word32 sum; extern Flag Overflow; /* Windowing of signal */ for(i=0; i<L_WINDOW; i++) { y[i] = mult_r(x[i], hamwindow[i]); } /* Compute r[0] and test for overflow */ do { Overflow = 0; sum = 1; /* Avoid case of all zeros */ for(i=0; i<L_WINDOW; i++) sum = L_mac(sum, y[i], y[i]); /* If overflow divide y[] by 4 */ if(Overflow != 0) { for(i=0; i<L_WINDOW; i++) { y[i] = shr(y[i], 2); } } }while (Overflow != 0); /* Normalization of r[0] */ norm = norm_l(sum); sum = L_shl(sum, norm); L_Extract(sum, &r_h[0], &r_l[0]); /* Put in DPF format (see oper_32b) */ /* r[1] to r[m] */ for (i = 1; i <= m; i++) { sum = 0; for(j=0; j<L_WINDOW-i; j++) sum = L_mac(sum, y[j], y[j+i]); sum = L_shl(sum, norm); L_Extract(sum, &r_h[i], &r_l[i]); } return;}/*-------------------------------------------------------* * Function Lag_window() * * * * Lag_window on autocorrelations. * * * * r[i] *= lag_wind[i] * * * * r[i] and lag_wind[i] are in special double precision.* * See "oper_32b.c" for the format * * * *-------------------------------------------------------*/void Lag_window( Word16 m, /* (i) : LPC order */ Word16 r_h[], /* (i/o) : Autocorrelations (msb) */ Word16 r_l[] /* (i/o) : Autocorrelations (lsb) */){ Word16 i; Word32 x; for(i=1; i<=m; i++) { x = Mpy_32(r_h[i], r_l[i], lag_h[i-1], lag_l[i-1]); L_Extract(x, &r_h[i], &r_l[i]); } return;}/*___________________________________________________________________________ | | | LEVINSON-DURBIN algorithm in double precision | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |---------------------------------------------------------------------------| | | | Algorithm | | | | R[i] autocorrelations. | | A[i] filter coefficients. | | K reflection coefficients. | | Alpha prediction gain. | | | | Initialization: | | A[0] = 1 | | K = -R[1]/R[0] | | A[1] = K | | Alpha = R[0] * (1-K**2] | | | | Do for i = 2 to M | | | | S = SUM ( R[j]*A[i-j] ,j=1,i-1 ) + R[i] | | | | K = -S / Alpha | | | | An[j] = A[j] + K*A[i-j] for j=1 to i-1 | | where An[i] = new A[i] | | An[i]=K | | | | Alpha=Alpha * (1-K**2) | | | | END | | | | Remarks on the dynamics of the calculations. | | | | The numbers used are in double precision in the following format : | | A = AH <<16 + AL<<1. AH and AL are 16 bit signed integers. | | Since the LSB's also contain a sign bit, this format does not | | correspond to standard 32 bit integers. We use this format since | | it allows fast execution of multiplications and divisions. | | | | "DPF" will refer to this special format in the following text. | | See oper_32b.c | | | | The R[i] were normalized in routine AUTO (hence, R[i] < 1.0). | | The K[i] and Alpha are theoretically < 1.0. | | The A[i], for a sampling frequency of 8 kHz, are in practice | | always inferior to 16.0. | | | | These characteristics allow straigthforward fixed-point | | implementation. We choose to represent the parameters as | | follows : | | | | R[i] Q31 +- .99.. | | K[i] Q31 +- .99.. | | Alpha Normalized -> mantissa in Q31 plus exponent | | A[i] Q27 +- 15.999.. | | | | The additions are performed in 32 bit. For the summation used | | to calculate the K[i], we multiply numbers in Q31 by numbers | | in Q27, with the result of the multiplications in Q27, | | resulting in a dynamic of +- 16. This is sufficient to avoid | | overflow, since the final result of the summation is | | necessarily < 1.0 as both the K[i] and Alpha are | | theoretically < 1.0. | |___________________________________________________________________________|*//* Last A(z) for case of unstable filter */static Word16 old_A[M+1]={4096,0,0,0,0,0,0,0,0,0,0};static Word16 old_rc[2]={0,0};void Levinson( Word16 Rh[], /* (i) : Rh[M+1] Vector of autocorrelations (msb) */ Word16 Rl[], /* (i) : Rl[M+1] Vector of autocorrelations (lsb) */ Word16 A[], /* (o) Q12 : A[M] LPC coefficients (m = 10) */ Word16 rc[] /* (o) Q15 : rc[M] Reflection coefficients. */){ Word16 i, j; Word16 hi, lo; Word16 Kh, Kl; /* reflection coefficient; hi and lo */ Word16 alp_h, alp_l, alp_exp; /* Prediction gain; hi lo and exponent */ Word16 Ah[M+1], Al[M+1]; /* LPC coef. in double prec. */ Word16 Anh[M+1], Anl[M+1]; /* LPC coef.for next iteration in double prec. */ Word32 t0, t1, t2; /* temporary variable *//* K = A[1] = -R[1] / R[0] */ t1 = L_Comp(Rh[1], Rl[1]); /* R[1] in Q31 */ t2 = L_abs(t1); /* abs R[1] */ t0 = Div_32(t2, Rh[0], Rl[0]); /* R[1]/R[0] in Q31 */ if(t1 > 0) t0= L_negate(t0); /* -R[1]/R[0] */ L_Extract(t0, &Kh, &Kl); /* K in DPF */ rc[0] = Kh; t0 = L_shr(t0,4); /* A[1] in Q27 */ L_Extract(t0, &Ah[1], &Al[1]); /* A[1] in DPF *//* Alpha = R[0] * (1-K**2) */ t0 = Mpy_32(Kh ,Kl, Kh, Kl); /* K*K in Q31 */ t0 = L_abs(t0); /* Some case <0 !! */ t0 = L_sub( (Word32)0x7fffffffL, t0 ); /* 1 - K*K in Q31 */ L_Extract(t0, &hi, &lo); /* DPF format */ t0 = Mpy_32(Rh[0] ,Rl[0], hi, lo); /* Alpha in Q31 *//* Normalize Alpha */ alp_exp = norm_l(t0); t0 = L_shl(t0, alp_exp); L_Extract(t0, &alp_h, &alp_l); /* DPF format *//*--------------------------------------* * ITERATIONS I=2 to M * *--------------------------------------*/ for(i= 2; i<=M; i++) { /* t0 = SUM ( R[j]*A[i-j] ,j=1,i-1 ) + R[i] */ t0 = 0; for(j=1; j<i; j++) t0 = L_add(t0, Mpy_32(Rh[j], Rl[j], Ah[i-j], Al[i-j])); t0 = L_shl(t0,4); /* result in Q27 -> convert to Q31 */ /* No overflow possible */ t1 = L_Comp(Rh[i],Rl[i]); t0 = L_add(t0, t1); /* add R[i] in Q31 */ /* K = -t0 / Alpha */ t1 = L_abs(t0); t2 = Div_32(t1, alp_h, alp_l); /* abs(t0)/Alpha */ if(t0 > 0) t2= L_negate(t2); /* K =-t0/Alpha */ t2 = L_shl(t2, alp_exp); /* denormalize; compare to Alpha */ L_Extract(t2, &Kh, &Kl); /* K in DPF */ rc[i-1] = Kh; /* Test for unstable filter. If unstable keep old A(z) */ if (sub(abs_s(Kh), 32750) > 0) { for(j=0; j<=M; j++) { A[j] = old_A[j]; } rc[0] = old_rc[0]; /* only two rc coefficients are needed */ rc[1] = old_rc[1]; return; } /*------------------------------------------* * Compute new LPC coeff. -> An[i] * * An[j]= A[j] + K*A[i-j] , j=1 to i-1 * * An[i]= K * *------------------------------------------*/ for(j=1; j<i; j++) { t0 = Mpy_32(Kh, Kl, Ah[i-j], Al[i-j]); t0 = L_add(t0, L_Comp(Ah[j], Al[j])); L_Extract(t0, &Anh[j], &Anl[j]); } t2 = L_shr(t2, 4); /* t2 = K in Q31 ->convert to Q27 */ L_Extract(t2, &Anh[i], &Anl[i]); /* An[i] in Q27 */ /* Alpha = Alpha * (1-K**2) */ t0 = Mpy_32(Kh ,Kl, Kh, Kl); /* K*K in Q31 */ t0 = L_abs(t0); /* Some case <0 !! */ t0 = L_sub( (Word32)0x7fffffffL, t0 ); /* 1 - K*K in Q31 */ L_Extract(t0, &hi, &lo); /* DPF format */ t0 = Mpy_32(alp_h , alp_l, hi, lo); /* Alpha in Q31 */ /* Normalize Alpha */ j = norm_l(t0); t0 = L_shl(t0, j); L_Extract(t0, &alp_h, &alp_l); /* DPF format */ alp_exp = add(alp_exp, j); /* Add normalization to alp_exp */ /* A[j] = An[j] */ for(j=1; j<=i; j++) { Ah[j] =Anh[j]; Al[j] =Anl[j]; } } /* Truncate A[i] in Q27 to Q12 with rounding */ A[0] = 4096; for(i=1; i<=M; i++) { t0 = L_Comp(Ah[i], Al[i]); old_A[i] = A[i] = round(L_shl(t0, 1)); } old_rc[0] = rc[0]; old_rc[1] = rc[1];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -