⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lpc.c

📁 C源程序---G.729a语音代码G.729a语音代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/*   ITU-T G.729A Speech Coder    ANSI-C Source Code   Version 1.1    Last modified: September 1996   Copyright (c) 1996,   AT&T, France Telecom, NTT, Universite de Sherbrooke   All rights reserved.*//*-----------------------------------------------------* * Function Autocorr()                                 * *                                                     * *   Compute autocorrelations of signal with windowing * *                                                     * *-----------------------------------------------------*/#include "typedef.h"#include "basic_op.h"#include "oper_32b.h"#include "ld8a.h"#include "tab_ld8a.h"void Autocorr(  Word16 x[],      /* (i)    : Input signal                      */  Word16 m,        /* (i)    : LPC order                         */  Word16 r_h[],    /* (o)    : Autocorrelations  (msb)           */  Word16 r_l[]     /* (o)    : Autocorrelations  (lsb)           */){  Word16 i, j, norm;  Word16 y[L_WINDOW];  Word32 sum;  extern Flag Overflow;  /* Windowing of signal */  for(i=0; i<L_WINDOW; i++)  {    y[i] = mult_r(x[i], hamwindow[i]);  }  /* Compute r[0] and test for overflow */  do {    Overflow = 0;    sum = 1;                   /* Avoid case of all zeros */    for(i=0; i<L_WINDOW; i++)      sum = L_mac(sum, y[i], y[i]);    /* If overflow divide y[] by 4 */    if(Overflow != 0)    {      for(i=0; i<L_WINDOW; i++)      {        y[i] = shr(y[i], 2);      }    }  }while (Overflow != 0);  /* Normalization of r[0] */  norm = norm_l(sum);  sum  = L_shl(sum, norm);  L_Extract(sum, &r_h[0], &r_l[0]);     /* Put in DPF format (see oper_32b) */  /* r[1] to r[m] */  for (i = 1; i <= m; i++)  {    sum = 0;    for(j=0; j<L_WINDOW-i; j++)      sum = L_mac(sum, y[j], y[j+i]);    sum = L_shl(sum, norm);    L_Extract(sum, &r_h[i], &r_l[i]);  }  return;}/*-------------------------------------------------------* * Function Lag_window()                                 * *                                                       * * Lag_window on autocorrelations.                       * *                                                       * * r[i] *= lag_wind[i]                                   * *                                                       * *  r[i] and lag_wind[i] are in special double precision.* *  See "oper_32b.c" for the format                      * *                                                       * *-------------------------------------------------------*/void Lag_window(  Word16 m,         /* (i)     : LPC order                        */  Word16 r_h[],     /* (i/o)   : Autocorrelations  (msb)          */  Word16 r_l[]      /* (i/o)   : Autocorrelations  (lsb)          */){  Word16 i;  Word32 x;  for(i=1; i<=m; i++)  {     x  = Mpy_32(r_h[i], r_l[i], lag_h[i-1], lag_l[i-1]);     L_Extract(x, &r_h[i], &r_l[i]);  }  return;}/*___________________________________________________________________________ |                                                                           | |      LEVINSON-DURBIN algorithm in double precision                        | |      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                        | |---------------------------------------------------------------------------| |                                                                           | | Algorithm                                                                 | |                                                                           | |       R[i]    autocorrelations.                                           | |       A[i]    filter coefficients.                                        | |       K       reflection coefficients.                                    | |       Alpha   prediction gain.                                            | |                                                                           | |       Initialization:                                                     | |               A[0] = 1                                                    | |               K    = -R[1]/R[0]                                           | |               A[1] = K                                                    | |               Alpha = R[0] * (1-K**2]                                     | |                                                                           | |       Do for  i = 2 to M                                                  | |                                                                           | |            S =  SUM ( R[j]*A[i-j] ,j=1,i-1 ) +  R[i]                      | |                                                                           | |            K = -S / Alpha                                                 | |                                                                           | |            An[j] = A[j] + K*A[i-j]   for j=1 to i-1                       | |                                      where   An[i] = new A[i]             | |            An[i]=K                                                        | |                                                                           | |            Alpha=Alpha * (1-K**2)                                         | |                                                                           | |       END                                                                 | |                                                                           | | Remarks on the dynamics of the calculations.                              | |                                                                           | |       The numbers used are in double precision in the following format :  | |       A = AH <<16 + AL<<1.  AH and AL are 16 bit signed integers.         | |       Since the LSB's also contain a sign bit, this format does not       | |       correspond to standard 32 bit integers.  We use this format since   | |       it allows fast execution of multiplications and divisions.          | |                                                                           | |       "DPF" will refer to this special format in the following text.      | |       See oper_32b.c                                                      | |                                                                           | |       The R[i] were normalized in routine AUTO (hence, R[i] < 1.0).       | |       The K[i] and Alpha are theoretically < 1.0.                         | |       The A[i], for a sampling frequency of 8 kHz, are in practice        | |       always inferior to 16.0.                                            | |                                                                           | |       These characteristics allow straigthforward fixed-point             | |       implementation.  We choose to represent the parameters as           | |       follows :                                                           | |                                                                           | |               R[i]    Q31   +- .99..                                      | |               K[i]    Q31   +- .99..                                      | |               Alpha   Normalized -> mantissa in Q31 plus exponent         | |               A[i]    Q27   +- 15.999..                                   | |                                                                           | |       The additions are performed in 32 bit.  For the summation used      | |       to calculate the K[i], we multiply numbers in Q31 by numbers        | |       in Q27, with the result of the multiplications in Q27,              | |       resulting in a dynamic of +- 16.  This is sufficient to avoid       | |       overflow, since the final result of the summation is                | |       necessarily < 1.0 as both the K[i] and Alpha are                    | |       theoretically < 1.0.                                                | |___________________________________________________________________________|*//* Last A(z) for case of unstable filter */static Word16 old_A[M+1]={4096,0,0,0,0,0,0,0,0,0,0};static Word16 old_rc[2]={0,0};void Levinson(  Word16 Rh[],      /* (i)     : Rh[M+1] Vector of autocorrelations (msb) */  Word16 Rl[],      /* (i)     : Rl[M+1] Vector of autocorrelations (lsb) */  Word16 A[],       /* (o) Q12 : A[M]    LPC coefficients  (m = 10)       */  Word16 rc[]       /* (o) Q15 : rc[M]   Reflection coefficients.         */){ Word16 i, j; Word16 hi, lo; Word16 Kh, Kl;                /* reflection coefficient; hi and lo           */ Word16 alp_h, alp_l, alp_exp; /* Prediction gain; hi lo and exponent         */ Word16 Ah[M+1], Al[M+1];      /* LPC coef. in double prec.                   */ Word16 Anh[M+1], Anl[M+1];    /* LPC coef.for next iteration in double prec. */ Word32 t0, t1, t2;            /* temporary variable                          *//* K = A[1] = -R[1] / R[0] */  t1  = L_Comp(Rh[1], Rl[1]);           /* R[1] in Q31      */  t2  = L_abs(t1);                      /* abs R[1]         */  t0  = Div_32(t2, Rh[0], Rl[0]);       /* R[1]/R[0] in Q31 */  if(t1 > 0) t0= L_negate(t0);          /* -R[1]/R[0]       */  L_Extract(t0, &Kh, &Kl);              /* K in DPF         */  rc[0] = Kh;  t0 = L_shr(t0,4);                     /* A[1] in Q27      */  L_Extract(t0, &Ah[1], &Al[1]);        /* A[1] in DPF      *//*  Alpha = R[0] * (1-K**2) */  t0 = Mpy_32(Kh ,Kl, Kh, Kl);          /* K*K      in Q31 */  t0 = L_abs(t0);                       /* Some case <0 !! */  t0 = L_sub( (Word32)0x7fffffffL, t0 ); /* 1 - K*K  in Q31 */  L_Extract(t0, &hi, &lo);              /* DPF format      */  t0 = Mpy_32(Rh[0] ,Rl[0], hi, lo);    /* Alpha in Q31    *//* Normalize Alpha */  alp_exp = norm_l(t0);  t0 = L_shl(t0, alp_exp);  L_Extract(t0, &alp_h, &alp_l);         /* DPF format    *//*--------------------------------------* * ITERATIONS  I=2 to M                 * *--------------------------------------*/  for(i= 2; i<=M; i++)  {    /* t0 = SUM ( R[j]*A[i-j] ,j=1,i-1 ) +  R[i] */    t0 = 0;    for(j=1; j<i; j++)      t0 = L_add(t0, Mpy_32(Rh[j], Rl[j], Ah[i-j], Al[i-j]));    t0 = L_shl(t0,4);                  /* result in Q27 -> convert to Q31 */                                       /* No overflow possible            */    t1 = L_Comp(Rh[i],Rl[i]);    t0 = L_add(t0, t1);                /* add R[i] in Q31                 */    /* K = -t0 / Alpha */    t1 = L_abs(t0);    t2 = Div_32(t1, alp_h, alp_l);     /* abs(t0)/Alpha                   */    if(t0 > 0) t2= L_negate(t2);       /* K =-t0/Alpha                    */    t2 = L_shl(t2, alp_exp);           /* denormalize; compare to Alpha   */    L_Extract(t2, &Kh, &Kl);           /* K in DPF                        */    rc[i-1] = Kh;    /* Test for unstable filter. If unstable keep old A(z) */    if (sub(abs_s(Kh), 32750) > 0)    {      for(j=0; j<=M; j++)      {        A[j] = old_A[j];      }      rc[0] = old_rc[0];        /* only two rc coefficients are needed */      rc[1] = old_rc[1];      return;    }    /*------------------------------------------*     *  Compute new LPC coeff. -> An[i]         *     *  An[j]= A[j] + K*A[i-j]     , j=1 to i-1 *     *  An[i]= K                                *     *------------------------------------------*/    for(j=1; j<i; j++)    {      t0 = Mpy_32(Kh, Kl, Ah[i-j], Al[i-j]);      t0 = L_add(t0, L_Comp(Ah[j], Al[j]));      L_Extract(t0, &Anh[j], &Anl[j]);    }    t2 = L_shr(t2, 4);                  /* t2 = K in Q31 ->convert to Q27  */    L_Extract(t2, &Anh[i], &Anl[i]);    /* An[i] in Q27                    */    /*  Alpha = Alpha * (1-K**2) */    t0 = Mpy_32(Kh ,Kl, Kh, Kl);          /* K*K      in Q31 */    t0 = L_abs(t0);                       /* Some case <0 !! */    t0 = L_sub( (Word32)0x7fffffffL, t0 ); /* 1 - K*K  in Q31 */    L_Extract(t0, &hi, &lo);              /* DPF format      */    t0 = Mpy_32(alp_h , alp_l, hi, lo);   /* Alpha in Q31    */    /* Normalize Alpha */    j = norm_l(t0);    t0 = L_shl(t0, j);    L_Extract(t0, &alp_h, &alp_l);         /* DPF format    */    alp_exp = add(alp_exp, j);             /* Add normalization to alp_exp */    /* A[j] = An[j] */    for(j=1; j<=i; j++)    {      Ah[j] =Anh[j];      Al[j] =Anl[j];    }  }  /* Truncate A[i] in Q27 to Q12 with rounding */  A[0] = 4096;  for(i=1; i<=M; i++)  {    t0   = L_Comp(Ah[i], Al[i]);    old_A[i] = A[i] = round(L_shl(t0, 1));  }  old_rc[0] = rc[0];  old_rc[1] = rc[1];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -