⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 main3.c

📁 数学算法的实现库。可以实现常见的线性计算。
💻 C
📖 第 1 页 / 共 3 页
字号:
#include <stdio.h>#include <stdlib.h>#include <string.h>#include <math.h>#include <blas.h>#include <ilupack.h>#include <ilupackmacros.h>#define MAX_LINE        255#define STDERR          stdout#define STDOUT          stdout#define PRINT_INFO#define MAX(A,B)        (((A)>(B))?(A):(B))#define MIN(A,B)        (((A)<(B))?(A):(B))// maximum number of iterations independent on n#define MAX_IT          500// measure for terminating iterative solver#define RESTOL_FUNC(A)  sqrt(A)//#define RESTOL_FUNC(A)  (A)// reorder the system according to the symmetric minimum degree ordering//#define MINIMUM_DEGREE// reorder the system according to the nested dissection ordering//#define NESTED_DISSECTION // reorder the system according to the reverse Cuthill-McKee ordering//#define REVERSE_CM// reorder the system according to some independent set ordering//#define IND_SET// reorder system using approximate minimum fill by Patrick Amestoy, // Tim Davis and Iain Duff//#define AMF// reorder system using approximate minimum degree by Patrick Amestoy// Tim Davis and Iain Duff//#define AMD// reorder the columns and rows of a system differently using a new unsymmetric// reordering strategy by Yousef Saad#define PQ_PERM// mixed strategies that finally switch to PQ if necessary//#define MMD_PQ//#define AMF_PQ//#define AMD_PQ//#define RCM_PQ//#define FC_PQ//#define METIS_E_PQ//#define METIS_N_PQ// Maximum Weight Matching interface MC64//#define MC64_RCM_PQ//#define MC64_MMD_PQ//#define MC64_AMF_PQ//#define MC64_AMD_PQ//#define MC64_METIS_E_PQ//#define MC64_METIS_N_PQ// alternative Maximum Weight Matching interface provided by PARDISO//#define MWM_RCM_PQ//#define MWM_MMD_PQ//#define MWM_AMF_PQ//#define MWM_AMD_PQ//#define MWM_METIS_E_PQ//#define MWM_METIS_N_PQ// use an iterative solver from SPARSKIT defined by variable SOLVER#define USE_SPARSKIT// variant of PILUC that uses a repeated multiple factorization approach//#define USE_MPILUCint main(int argc, char **argv){    /* SOLVER choice:   1  pcg                        3  bcg                        8  gmres                        9  fgmres */    int SOLVER=8; /* gmres */    CSRMAT fullmat, A, AT;    FILE   *fp, *fo;     char   rhstyp[3], title[73], key[9], type[3], fname[100], foname[100], extension[3];    int    i,j,k,l,fnamelen,n,m,nc,nz,nrhs,tmp0,tmp,tmp2,tmp3,ierr, nLU,           nrhsix, *rhsptr, *rhsind, ELBOW, flags, nnzL,nnzU, nAx=0,            elbow, nrestart, max_it, nlev=0, mynrhs=2, nju,njlu,nalu,           (*perm0)(),(*perm)(),(*permf)(), transpose=0, sumit, *ibuff, *ju, *jlu;    REALS  DROP_TOL, condest, droptols[2], amgcancel, val,vb,           CONDEST, restol;    FLOAT  *rhs,*sol, *leftscale, *rightscale, *rhsval, *dbuff, *alu;    float  systime, time_start, time_stop, secnds, sumtime;    AMGLEVELMAT PRE, *next;    ILUPACKPARAM param;    size_t ndbuff, nibuff;        /* the last argument passed serves as file name */    if (argc!=5) {      printf("usage '%s <drop tol.> <bound for L^{-1},U^{-1}> <elbow space> <matrix>'\n",argv[0]);       exit(0);    }    i=0;    while (argv[argc-1][i]!='\0')    {          fname[i]=argv[argc-1][i];          i++;    } /* end while */    fname[i]='\0';    fnamelen=i;    i=fnamelen-1;    while (i>=0 && fname[i]!='/')          i--;    i++;    j=0;    while (i<fnamelen && fname[i]!='.')          foname[j++]=fname[i++];    while (j<16)          foname[j++]=' ';    foname[j]='\0';    ELBOW=atoi(argv[argc-2]);    CONDEST=atof(argv[argc-3]);    DROP_TOL=atof(argv[argc-4]);    /* read in a matrix in Harwell-Boeing format. By definition Harwell-Boeing       format stores a matrix in compressed sparse COLUMN format. However,       ILUPACK uses compressed sparse ROW format. Therefore it is necessary       to transpose the matrix manually.                  /3.5 -1.0  0 \       A matrix  | 0   2.0  0 | is stored as follows                 \ 0    0  1.5/        A.ia:   1  3  4  5           pointer to the start of every compressed                                     row plus pointer to the first space 				    behind the compressed rows       A.ja:   1    2    2    3     nonzero column indices       A.a:   3.5 -1.0  2.0  1.5    nonzero numerical values       The read part finally yields the following data structures        -  A:  matrix in compressed sparse row format	    o  A.nr, A.nc: number of rows and columns of A            o  A.ia:  pointer array            o  A.ja:  nonzero column index array 	    o  A.a:   nonzero numerical values	-  rhs:  right hand side(s) and additional data like exact solution	         or initial guess	-  n:  same as A.nr,A.nc	-  nz:  number of nonzero entries     */#include "readmatrix.c"    // if right hand sides are provided, then run AMGSOLVER for any of these    // right hand sides. Otherwise use own set of right hand sides    // allocate memory for the solution vector and some buffer    sol  =(FLOAT *)MALLOC(mynrhs*(size_t)n*sizeof(FLOAT),  "main:sol");    dbuff=(FLOAT *)MALLOC(3*(size_t)n*sizeof(FLOAT),"main:dbuff");    ndbuff=3*(size_t)n;    // set parameters to the default settings    AMGINIT(A, &param);    param.dbuff=dbuff;    param.ndbuff=ndbuff;    // select reordering functions    perm0=PERMNULL;    perm =PERMNULL;    permf=PERMNULL;#ifdef MINIMUM_DEGREE    perm0=PERMMMD;    perm =PERMMMD;    permf=PERMMMD;    fprintf(fo,"mmds/mmds|");#elif defined REVERSE_CM    perm0=PERMRCM;    perm =PERMRCM;    permf=PERMRCM;    fprintf(fo,"rcms/rcms|");#elif defined NESTED_DISSECTION    perm0=PERMND;    perm =PERMND;    permf=PERMND;    fprintf(fo,"nds /nds |");#elif defined IND_SET    perm0=PERMINDSET;    perm =PERMINDSET;    permf=PERMINDSET;    fprintf(fo,"inds/inds|");#elif defined AMF    perm0=PERMAMF;    perm =PERMAMF;    permf=PERMAMF;    fprintf(fo,"amfs/amfs|");#elif defined AMD    perm0=PERMAMD;    perm =PERMAMD;    permf=PERMAMD;    fprintf(fo,"amds/amds|");#elif defined PQ_PERM    perm0=PERMPQ;     perm =PERMPQ;    permf=PERMPQ;    fprintf(fo,"PQs /PQs |");#elif defined MMD_PQ    perm0=PERMMMD;     perm =PERMMMD;     permf=PERMPQ;    fprintf(fo,"mmds/PQs |");#elif defined AMF_PQ    perm0=PERMAMF;    perm =PERMAMF;    permf=PERMPQ;    fprintf(fo,"amfs/PQs |");#elif defined AMD_PQ    perm0=PERMAMD;    perm =PERMAMD;    permf=PERMPQ;    fprintf(fo,"amds/PQs |");#elif defined RCM_PQ    perm0=PERMRCM;    perm =PERMRCM;    permf=PERMPQ;    fprintf(fo,"rcms/PQs |");#elif defined FC_PQ    perm0=PERMFC;    perm =PERMFC;    permf=PERMPQ;    fprintf(fo,"FCs /PQs |");#elif defined METIS_E_PQ    perm0=PERMMETISE;    perm =PERMMETISE;    permf=PERMPQ;    fprintf(fo,"mes /PQs |");#elif defined METIS_N_PQ    perm0=PERMMETISN;    perm =PERMMETISN;    permf=PERMPQ;    fprintf(fo,"mns /PQs |");#elif defined MC64_RCM_PQ    perm0=PERMMC64RCM;    perm =PERMRCM;    permf=PERMPQ;    fprintf(fo,"mc64rc/PQ|");#elif defined MC64_MMD_PQ    perm0=PERMMC64MMD;    perm =PERMMMD;    permf=PERMPQ;    fprintf(fo,"mc64md/PQ|");#elif defined MC64_AMF_PQ    perm0=PERMMC64AMF;    perm =PERMAMF;    permf=PERMPQ;    fprintf(fo,"mc64af/PQ|");#elif defined MC64_AMD_PQ    perm0=PERMMC64AMD;    perm =PERMAMD;    permf=PERMPQ;    fprintf(fo,"mc64ad/PQ|");#elif defined MC64_METIS_E_PQ    perm0=PERMMC64METISE;    perm =PERMMETISE;    permf=PERMPQ;    fprintf(fo,"mc64me/PQ|");#elif defined MC64_METIS_N_PQ    perm0=PERMMC64METISN;    perm =PERMMETISN;    permf=PERMPQ;    fprintf(fo,"mc64mn/PQ|");#elif defined MWM_RCM_PQ    perm0=PERMMWMRCM;    perm =PERMRCM;    permf=PERMPQ;    fprintf(fo,"mwrc/PQs |");#elif defined MWM_MMD_PQ    perm0=PERMMWMMMD;    perm =PERMMMD;    permf=PERMPQ;    fprintf(fo,"mwmd/PQs |");#elif defined MWM_AMF_PQ    perm0=PERMMWMAMF;    perm =PERMAMF;    permf=PERMPQ;    fprintf(fo,"mwaf/PQs |");#elif defined MWM_AMD_PQ    perm0=PERMMWMAMD;    perm =PERMAMD;    permf=PERMPQ;    fprintf(fo,"mwad/PQs |");#elif defined MWM_METIS_E_PQ    perm0=PERMMWMMETISE;    perm =PERMMETISE;    permf=PERMPQ;    fprintf(fo,"mwme/PQs |");#elif defined MWM_METIS_N_PQ    perm0=PERMMWMMETISN;    perm =PERMMETISN;    permf=PERMPQ;    fprintf(fo,"mwmn/PQs |");#else    fprintf(fo,"    /    |");#endif    // modify the default settings    AMGGETPARAMS(param, &flags, &elbow, droptols, &condest,		 &restol, &max_it, &nrestart);    // ONLY for mixed reordering strategies it is useful to    // set the 'FINAL_PIVOTING' flag#if !defined RCM_PQ && !defined AMF_PQ && !defined AMD_PQ && !defined MMD_PQ && !defined FC_PQ && !defined METIS_E_PQ && !defined METIS_N_PQ && !defined MWM_RCM_PQ && !defined MWM_MMD_PQ && !defined MWM_AMF_PQ && !defined MWM_AMD_PQ && !defined MWM_METIS_E_PQ && !defined MWM_METIS_N_PQ && !defined MC64_RCM_PQ && !defined MC64_MMD_PQ && !defined MC64_AMF_PQ && !defined MC64_AMD_PQ && !defined MC64_METIS_E_PQ && !defined MC64_METIS_N_PQ    flags&=~FINAL_PIVOTING;#endif    // change flags if mpiluc is desired#ifdef USE_MPILUC    flags|=MULTI_PILUC;#endif    // overwrite the default drop tolerances    //droptols[0]=1.0; // DROP_TOL; //     droptols[1]=DROP_TOL;     // choose the iterative solver, default: 8 (GMRES)    param.ipar[5]=SOLVER;    // overwrite the default value for elbow space    elbow=ELBOW;    // overwrite default values for condest    condest=CONDEST;    // overwrite the default value for the residual norm    restol=1.0e-8;    // turn of column scaling    //param.ipar[7]&=~(2+16+128);        // use diagonal compensation    //flags|=DIAGONAL_COMPENSATION;    //flags|=DIAGONAL_COMPENSATION|TISMENETSKY_SC;    //flags|=TISMENETSKY_SC;    // use Standard Schur-complement    // flags&=~SIMPLE_SC;    // indicate that we want to compute more than one ILU    flags|=RE_FACTOR;    // keep the (1,2) block and the (1,2) block in the multilevel ILU    // factorization, this may lead to more fill-in    // flags&=~COARSE_REDUCE;    // limit maximum number of entries in each column of L, row of U    //param.ipar[3]=ELBOW*(nz/n)+5;    // limit maximum number of entries in each row of S    //param.ipar[9]=ELBOW*(nz/n)+5;    // rewrite the updated parameters    AMGSETPARAMS(A, &param, flags, elbow, droptols, condest,		 restol, max_it, nrestart);    // manually change the drop tolerance for the approximate Schur complement    //param.fpar[8]=DROP_TOL;    // print some messages that give information about flags and reorderings#include "messages.c"    evaluate_time(&time_start,&systime);    ierr=AMGFACTOR(&A, &PRE, &nlev, &param, perm0,perm, permf);    // update buffer size    nibuff=param.nibuff;    ndbuff=param.ndbuff;    evaluate_time(&time_stop,&systime);    secnds=time_stop-time_start;    switch (ierr)    {           case  0: /* perfect! */	            break;           case -1: /* Error. input matrix may be wrong.                       (The elimination process has generated a			row in L or U whose length is .gt.  n.) */	            printf("Error. input matrix may be wrong at level %d\n",nlev);		    fprintf(fo,"input matrix may be wrong\n");fclose(fo); 		    break;           case -2: /* The matrix L overflows the array alu */	            printf("The matrix L overflows the array alu at level %d\n",nlev);		    fprintf(fo,"out of memory\n");fclose(fo); 		    break;           case -3: /* The matrix U overflows the array alu */	            printf("The matrix U overflows the array alu at level %d\n",nlev);		    fprintf(fo,"out of memory\n");fclose(fo); 		    break;           case -4: /* Illegal value for lfil */	            printf("Illegal value for lfil at level %d\n",nlev);		    fprintf(fo,"Illegal value for lfil\n");fclose(fo); 		    break;           case -5: /* zero row encountered */	            printf("zero row encountered at level %d\n",nlev);		    fprintf(fo,"zero row encountered\n");fclose(fo); 		    break;           case -6: /* zero column encountered */	            printf("zero column encountered at level %d\n",nlev);		    fprintf(fo,"zero column encountered\n");fclose(fo); 		    break;           case -7: /* buffers too small */	            printf("buffers are too small\n");		    // This error message would not be necessary if AMGsetup is		    // called with the correct values of nibuff, ndbuff		    printf("increase buffer size to at least %ld (float), %ld (int)\n",			   ndbuff, nibuff);		    fflush(stdout);		    fprintf(fo,"buffers are too small\n");fclose(fo);            default: /* zero pivot encountered at step number ierr */	            printf("zero pivot encountered at step number %d of level %d\n",ierr,nlev);		    fprintf(fo,"zero pivot encountered\n");fclose(fo); 		    break;    } /* end switch */    if (ierr) {       fprintf(fo,"Iterative solver(s) cannot be applied\n");       fflush(fo);       exit(ierr);    }    // print some statistics about the levels, their size and the     // computation time#include "printperformance.c"

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -