📄 mainspdexpert.c
字号:
SPDAMGSETPARAMS(A, ¶m, flags, elbow, droptols, condest, restol, max_it); // print some messages that give information about flags and reorderings#include "spdmessages.c" evaluate_time(&time_start,&systime); ierr=SPDAMGSETUP(&A, &PRE, &nlev, ¶m, perm0,perm, permf); // update buffer size nibuff=param.nibuff; ndbuff=param.ndbuff; evaluate_time(&time_stop,&systime); secnds=time_stop-time_start; switch (ierr) { case 0: /* perfect! */ break; case -1: /* Error. input matrix may be wrong. (The elimination process has generated a row in L or U whose length is .gt. n.) */ printf("Error. input matrix may be wrong at level %d\n",nlev); fprintf(fo,"input matrix may be wrong\n");fclose(fo); break; case -2: /* The matrix L overflows the array alu */ printf("The matrix L overflows the array alu at level %d\n",nlev); fprintf(fo,"out of memory\n");fclose(fo); break; case -3: /* The matrix U overflows the array alu */ printf("The matrix U overflows the array alu at level %d\n",nlev); fprintf(fo,"out of memory\n");fclose(fo); break; case -4: /* Illegal value for lfil */ printf("Illegal value for lfil at level %d\n",nlev); fprintf(fo,"Illegal value for lfil\n");fclose(fo); break; case -5: /* zero row encountered */ printf("zero row encountered at level %d\n",nlev); fprintf(fo,"zero row encountered\n");fclose(fo); break; case -6: /* zero column encountered */ printf("zero column encountered at level %d\n",nlev); fprintf(fo,"zero column encountered\n");fclose(fo); break; case -7: /* buffers too small */ printf("buffers are too small\n"); // This error message would not be necessary if AMGsetup is // called with the correct values of nibuff, ndbuff printf("increase buffer size to at least %ld (float), %ld (int)\n", ndbuff, nibuff); fflush(stdout); fprintf(fo,"buffers are too small\n");fclose(fo); default: /* zero pivot encountered at step number ierr */ printf("zero pivot encountered at step number %d of level %d\n",ierr,nlev); fprintf(fo,"zero pivot encountered\n");fclose(fo); break; } /* end switch */ if (ierr) { fprintf(fo,"Iterative solver(s) cannot be applied\n"); fflush(fo); exit(ierr); }#ifdef USE_MPILUC // printf("ARMSMPILUC finished\n");fflush(STDOUT); printf("ARMS oo MPILUC, multilevel structure\n");#else // printf(" ARMSPILUC finished\n");fflush(STDOUT); printf("ARMS oo PILUC, multilevel structure\n");#endif fprintf(fo,"%3d|",nlev); next=&PRE; nnzU=0; tmp=0; for (i=1; i<=nlev; i++) { // fill-in LU printf("level %3d, block size %7d\n",i,next->LU.nr); fflush(stdout); l=nnzU; if (i<nlev || next->LU.ja!=NULL) { nnzU+=next->LU.ja[next->LU.nr-1]-next->LU.ja[0]; } if (i==nlev) { if (next->LU.ja==NULL) { printf("switched to full matrix processing\n");fflush(STDOUT); tmp=-1; j=next->LU.nr; nnzU+=(j*(j-1))/2; } } printf(" local fill-in %7d(%5.1lfav)\n", nnzU-l+next->LU.nr,(1.0*(nnzU-l+next->LU.nr))/next->LU.nr); if (i<nlev) { // fill-in F nnzU+=next->F.ia[next->F.nr]-1; printf("level %3d->%3d, block size (%7d,%7d)\n",i,i+1,next->LU.nr,next->F.nc); printf(" local fill-in F %7d(%5.1lfav pr)\n", next->F.ia[next->F.nr]-1,(1.0*(next->F.ia[next->F.nr]-1))/next->LU.nr); } next=next->next; } printf("\ntotal fill-in sum%8d(%5.1lfav)\n", nnzU+n,(1.0*(nnzU+n))/n); printf("fill-in factor: %5.1lf\n",(1.0*(nnzU+n))/nz); if (tmp) { // nnzU-j*(j+1)/2+n-j memory for sparse data structures // indices (weight 1/3) and values (weight 2/3) // j*(j+1)/2 memory for dense data, no indices (weight 2/3) printf("memory usage factor: %5.1lf\n",(1.0*(nnzU-(j*(j+1))/2+n-j))/nz +(j*(j+1))/(3.0*nz)); fprintf(fo,"%5.1f|",(1.0*(nnzU-(j*(j+1))/2+n-j))/nz +(j*(j+1))/(3.0*nz)); } else { printf("memory usage factor: %5.1lf\n",(1.0*(nnzU+n))/nz); fprintf(fo,"%5.1f|",(1.0*(nnzU+n))/nz); } printf("total time: %8.1le [sec]\n", (double)secnds); printf(" %8.1le [sec]\n\n",(double)ILUPACK_secnds[7]); fprintf(fo,"%7.1le|",(double)secnds);#ifdef USE_MPILUC printf("refined timings for MPILDLC\n"); #else printf("refined timings for PILDLC\n"); #endif printf("initial preprocessing: %8.1le [sec]\n",ILUPACK_secnds[0]); printf("reorderings remaining levels:%8.1le [sec]\n",ILUPACK_secnds[1]); #ifdef USE_MPILUC printf("MPILDLC(sum over all levels):%8.1le [sec]\n",ILUPACK_secnds[2]); #else printf("PILDLC (sum over all levels):%8.1le [sec]\n",ILUPACK_secnds[2]); #endif printf("ILDLC (if used): %8.1le [sec]\n",ILUPACK_secnds[3]); printf("LDLP (if used): %8.1le [sec]\n",ILUPACK_secnds[4]); printf("remaining parts: %8.1le [sec]\n\n",MAX(0.0,(double)secnds -ILUPACK_secnds[0] -ILUPACK_secnds[1] -ILUPACK_secnds[2] -ILUPACK_secnds[3] -ILUPACK_secnds[4])); fflush(STDOUT); /* next=&PRE; for (i=1; i<=nlev; i++) { printf("%d,%d\n",next->n,next->nB); for (j=0; j<next->n; j++) printf("%8d",next->p[j]); printf("\n"); for (j=0; j<next->n; j++) printf("%8d",next->invq[j]); printf("\n"); next=next->next; } fflush(STDOUT); printf("multilevel structure\n"); fflush(STDOUT); printf("number of levels: %d\n",nlev); fflush(STDOUT); next=&PRE; for (i=1; i<=nlev; i++) { printf("total size %d\n",next->n); fflush(STDOUT); printf("leading block %d\n",next->nB); fflush(STDOUT); printf("row permutation\n"); for (j=0; j<next->n; j++) printf("%4d",next->p[j]); printf("\n"); fflush(STDOUT); printf("inverse column permutation\n"); for (j=0; j<next->n; j++) printf("%4d",next->invq[j]); printf("\n"); fflush(STDOUT); if (nlev==1) { printf("row scaling\n"); for (j=0; j<next->n; j++) printf("%12.4e",next->rowscal[j]); printf("\n"); fflush(STDOUT); printf("column scaling\n"); for (j=0; j<next->n; j++) printf("%12.4e",next->colscal[j]); printf("\n"); fflush(STDOUT); } printf("(2,1) block E (%d,%d)\n",next->E.nr,next->E.nc); fflush(STDOUT); for (k=0; k<next->E.nr; k++) { printf("%3d: ",k+1); for (j=next->E.ia[k]-1; j<next->E.ia[k+1]-1;j++) fprintf(STDOUT,"%12d",next->E.ja[j]); printf("\n"); fflush(STDOUT); printf(" "); for (j=next->E.ia[k]-1; j<next->E.ia[k+1]-1;j++) fprintf(STDOUT,"%12.4e",next->E.a[j]); printf("\n"); fflush(STDOUT); } printf("(1,2) block F (%d,%d)\n",next->F.nr,next->F.nc); fflush(STDOUT); for (k=0; k<next->F.nr; k++) { printf("%3d: ",k+1); for (j=next->F.ia[k]-1; j<next->F.ia[k+1]-1;j++) fprintf(STDOUT,"%12d",next->F.ja[j]); printf("\n"); fflush(STDOUT); printf(" "); for (j=next->F.ia[k]-1; j<next->F.ia[k+1]-1;j++) fprintf(STDOUT,"%12.4e",next->F.a[j]); printf("\n"); fflush(STDOUT); } printf("ILU...\n"); printf("Diagonal part\n"); for (k=0; k<next->LU.nr; k++) { fprintf(STDOUT,"%12.4e",next->LU.a[k]); } printf("\n"); printf("L part\n"); for (k=0; k<next->LU.nr; k++) { printf("col %3d: ",k+1); for (j=next->LU.ja[k]-1; j<next->LU.ia[k]-1;j++) fprintf(STDOUT,"%12d",next->LU.ja[j]); printf("\n"); fflush(STDOUT); printf(" "); for (j=next->LU.ja[k]-1; j<next->LU.ia[k]-1;j++) fprintf(STDOUT,"%12.4e",next->LU.a[j]); printf("\n"); fflush(STDOUT); } printf("U part\n"); for (k=0; k<next->LU.nr; k++) { printf("row %3d: ",k+1); for (j=next->LU.ia[k]-1; j<next->LU.ja[k+1]-1;j++) fprintf(STDOUT,"%12d",next->LU.ja[j]); printf("\n"); fflush(STDOUT); printf(" "); for (j=next->LU.ia[k]-1; j<next->LU.ja[k+1]-1;j++) fprintf(STDOUT,"%12.4e",next->LU.a[j]); printf("\n"); fflush(STDOUT); } next=next->next; } */ // 3n words are required by AMGsol param.ndbuff=MAX(param.ndbuff,3*(size_t)n); ndbuff=param.ndbuff; param.dbuff=(FLOAT *)REALLOC(param.dbuff,param.ndbuff*sizeof(FLOAT), "main:ndbuff"); // remember that scaling is explicitly applied to A scale =PRE.colscal; if (rhstyp[2]=='X' || rhstyp[2]=='x') { j=nrhs*n; if (rhstyp[1]=='G' || rhstyp[1]=='g') j*=2; if (rhstyp[0]=='M' || rhstyp[0]=='m') j-=nrhs*n; for (i=0; i<n; i++,j++) sol[i]=rhs[j]; } else for (i=0; i<n; i++) {#if defined _DOUBLE_REAL_ || defined _SINGLE_REAL_ sol[i]=1.0;#else sol[i].r=1.0; sol[i].i=0.0;#endif } // end for i /* rescale solution */ for (i=0; i<n; i++) {#if defined _DOUBLE_REAL_ || defined _SINGLE_REAL_ sol[i]=1.0/scale[i];#else val=1.0/(scale[i].r*scale[i].r +scale[i].i*scale[i].i); vb=sol[i].r; sol[i].r=( vb*scale[i].r+sol[i].i*scale[i].i)*val; sol[i].i=(-vb*scale[i].i+sol[i].i*scale[i].r)*val; //sol[i].r= scale[i].r*val; //sol[i].i=-scale[i].i*val;#endif } // end for i /* for (i=0; i<n; i++) printf("%12.4e",sol[i]); printf("\n"); fflush(STDOUT); for (i=0; i<n; i++) { printf("%3d:",i+1); for (j=A.ia[i]-1; j<A.ia[i+1]-1; j++) printf("%12d", A.ja[j]); printf("\n"); fflush(STDOUT); printf(" "); for (j=A.ia[i]-1; j<A.ia[i+1]-1; j++) printf("%12.4e", A.a[j]); printf("\n"); fflush(STDOUT); } */ // release part of rhs that may store the uncompressed rhs if (rhstyp[0]=='M' || rhstyp[0]=='m') rhs-=n; if (nrhs==0) { // right hand side rhs=A*sol HERMATVEC(A,sol,rhs); } else { if (rhstyp[0]=='M' || rhstyp[0]=='m') { for (i=0; i<n; i++) {#if defined _DOUBLE_REAL_ || defined _SINGLE_REAL_ rhs[i]=0;#else rhs[i].r=rhs[i].i=0;#endif }// end for i // uncompress rhs for (i=0; i<rhsptr[1]-rhsptr[0]; i++) { j=rhsind[i]-1; rhs[j]=rhsval[i]; } // end for i } // end if for (i=0; i<n; i++) {#if defined _DOUBLE_REAL_ || defined _SINGLE_REAL_ rhs[i]*=scale[i];#else val=rhs[i].r; rhs[i].r=val*scale[i].r-rhs[i].i*scale[i].i; rhs[i].i=val*scale[i].i+rhs[i].i*scale[i].r;#endif } // end for i } // end else //printf("matrix-vector multiply done\n");fflush(STDOUT); /* printf("true right hand side\n"); for (i=0; i<n; i++) printf("%12.4e",rhs[i]); printf("\n"); fflush(STDOUT); printf("start GMRES\n");fflush(STDOUT); */ /* -------------------- apply preconditioner --------------------- */ if (ierr==0) {#ifdef USE_SPARSKIT /* initial solution */ if (rhstyp[1]=='G' || rhstyp[1]=='g') { j=nrhs*n; if (rhstyp[0]=='M' || rhstyp[0]=='m') j=n; for (i=0; i<n; i++,j++) sol[i]=rhs[j]; } else for (i=0; i<n; i++)#if defined _DOUBLE_REAL_ || defined _SINGLE_REAL_
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -