⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mainspdexpert.c

📁 数学算法的实现库。可以实现常见的线性计算。
💻 C
📖 第 1 页 / 共 3 页
字号:
#include <stdio.h>#include <stdlib.h>#include <string.h>#include <math.h>#include <blas.h>#include <sparspak.h>#include <ilupack.h>#include <ilupackmacros.h>#define MAX_LINE        255#define STDERR          stdout#define STDOUT          stdout#define PRINT_INFO#define MAX(A,B)        (((A)>(B))?(A):(B))#define MIN(A,B)        (((A)<(B))?(A):(B))// maximum number of iterations independent on n#define MAX_IT          500// measure for terminating iterative solver#define RESTOL_FUNC(A)  sqrt(A)//#define RESTOL_FUNC(A)  (A)// reorder the system according to the symmetric minimum degree ordering//#define MINIMUM_DEGREE// reorder the system according to the nested dissection ordering//#define NESTED_DISSECTION // reorder the system according to the reverse Cuthill-McKee ordering//#define REVERSE_CM// reorder the system according to some independent set ordering//#define IND_SET// reorder system using approximate minimum fill by Patrick Amestoy, // Tim Davis and Iain Duff//#define AMF// reorder system using approximate minimum degree by Patrick Amestoy// Tim Davis and Iain Duff//#define AMD// reorder system using MeTiS multilevel nested dissection by edges//#define METIS_E// reorder system using MeTiS multilevel nested dissection by nodes//#define METIS_N// reorder the columns and rows of a system differently using a new unsymmetric// reordering strategy by Yousef Saad//#define PP_PERM// mixed strategies that finally switch to PQ if necessary//#define MMD_PP//#define AMF_PP//#define AMD_PP//#define RCM_PP//#define FC_PP//#define METIS_E_PP#define METIS_N_PP// use an iterative solver from SPARSKIT defined by variable SOLVER#define USE_SPARSKIT// variant of PILUC that uses a repeated multiple factorization approach//#define USE_MPILUCint main(int argc, char **argv){    /* SOLVER choice:   1  pcg                        2  cgnr                        3  bcg                        4  dbcg                        5  bcgstab                        6  tfqmr                        7  fom                        8  gmres                        9  fgmres                       10  dqgmres */    int SOLVER=1; /* pcg */    CSRMAT A, ilutmat;    AMGLEVELMAT PRE, *next;    int nlev=0, nprev, nB;    int (*perm0)(),(*perm)(),(*permf)();    FILE *fp, *fo;     char rhstyp[3], title[72], key[8], type[3], fname[100], foname[100];    char line[MAX_LINE], *tmpstring, timeout[7], residout[7];    int  i,j,k,m,fnamelen,n,nc,nz,nrhs,tmp0,tmp,tmp2,tmp3,ierr,flag,      *invperm, *buff, *ws, *symmmd,flags,elbow,max_it,         nrhsix, *rhsptr, *rhsind;    REALS  eps, DROP_TOL, CONDEST,condest,droptols[2],restol,          val,vb, *rbuff;    FLOAT *rhs,*sol,*w,  *scale, *rhsval, *dbuff;    float  systime, time_start,   time_stop,   secnds, secndsprep,           timeAx_start, timeAx_stop, secndsAx;    int ELBOW, nnzU, l, nAx;    ILUPACKPARAM param;    size_t   nibuff, ndbuff;    /* the last argument passed serves as file name */    if (argc!=5) {      printf("usage '%s <drop tol.> <bound for L^{-1},U^{-1}> <elbow space> <matrix>'\n",argv[0]);       exit(0);    }    i=0;    while (argv[argc-1][i]!='\0')    {          fname[i]=argv[argc-1][i];          i++;    } /* end while */    fname[i]='\0';    fnamelen=i;    while (i>=0 && fname[i]!='/')          i--;    i++;    j=0;    while (i<fnamelen && fname[i]!='.')          foname[j++]=fname[i++];    while (j<16)          foname[j++]=' ';    foname[j]='\0';    ELBOW=atoi(argv[argc-2]);    CONDEST=atof(argv[argc-3]);    DROP_TOL=atof(argv[argc-4]);/*----------------------------------------------------------------------|     Read a Harwell-Boeing matrix.|     Use readmtc first time to determine sizes of arrays.|     Read in values on the second call.|---------------------------------------------------------------------*/    nrhs = 0;    tmp0 = 0;    if ((fp=fopen(fname,"r"))==NULL) {        fprintf(STDERR," file %s not found\n",fname);        exit(0);    }    fclose(fp);    READMTC(&tmp0,&tmp0,&tmp0,fname,A.a,A.ja,A.ia,	    rhs,&nrhs,rhstyp,&n,&nc,&nz,title,key,type,	    &nrhsix,rhsptr,rhsind,rhsval,&ierr,fnamelen,2,72,8,3);    if (ierr) {        fprintf(STDERR," ierr = %d\n",ierr);        fprintf(STDERR," error in reading the matrix, stop.\n");	switch(ierr) {	case 1:	  fprintf(STDERR,"too many columns\n");	  break;  	case 2:	  fprintf(STDERR,"too many nonzeros\n");	  break;  	case 3:	  fprintf(STDERR,"too many columns and nonzeros\n");	  break;  	case 4:	  fprintf(STDERR,"right hand side has incompatible type\n");	  break;  	case 5:	  fprintf(STDERR,"too many right hand side entries\n");	  break;  	case 6:	  fprintf(STDERR,"wrong type (real/complex)\n");	  break;  	}        exit(ierr);    }    printf("Matrix: %s: size (%d,%d), nnz=%d(%4.1lfav.)\n", fname, n,nc,	   nz,((double)nz)/n);    if (fname[fnamelen-1]=='5')      fo = fopen("out_mc64","aw");    else      fo = fopen("out_normal","aw");    fprintf(fo,"%s|%7.1e|%7.1e|",foname,DROP_TOL,CONDEST);    m=1;    if (nrhs>0) {       printf ("Number of right hand sides supplied: %d \n", nrhs) ;       if (rhstyp[1]=='G' || rhstyp[1]=='g') {	 m++;	 printf ("Initial solution(s) offered\n") ;       }       else	 printf ("\n") ;       if (rhstyp[2]=='X' || rhstyp[2]=='x') {	 m++;	 printf ("Exact solution(s) provided\n") ;       }       else	 printf ("\n") ;    }    else       printf("\n\n\n");    printf("\n");    rhsptr=NULL;    rhsind=NULL;    rhsval=NULL;    if (rhstyp[0]=='M' || rhstyp[0]=='m') {       rhsptr=(int *)  MALLOC((size_t)(nrhs+1)*sizeof(int),"main:rhsptr");       rhsind=(int *)  MALLOC((size_t)nrhsix*sizeof(int),  "main:rhsind");       rhsval=(FLOAT *)MALLOC((size_t)nrhsix*sizeof(FLOAT),"main:rhsval");       // no dense right hand side       m--;       m*=n*MAX(1,nrhs);       // in any case we need at least one vector for the r.h.s.       m+=n;    }    else       m*=n*MAX(1,nrhs);    A.ia=(int *)  MALLOC((size_t)(n+1)*sizeof(int),"main:A.ia");    A.ja=(int *)  MALLOC((size_t)nz*sizeof(int),   "main:A.ja");    A.a =(FLOAT *)MALLOC((size_t)nz*sizeof(FLOAT), "main:A.a");    A.nr=n;    A.nc=n;    rhs       =(FLOAT *) MALLOC((size_t)m*sizeof(FLOAT),  "main:rhs");    // advance pointer to reserve space when uncompressing the right hand side    if (rhstyp[0]=='M' || rhstyp[0]=='m')       rhs+=n;        // set parameters to the default settings    SPDAMGINIT(A, &param);    sol  =(FLOAT *) MALLOC((size_t)n*sizeof(FLOAT),  "main:sol");    dbuff=(FLOAT *) MALLOC(3*(size_t)n*sizeof(FLOAT),"main:dbuff");    ndbuff=3*(size_t)n;    tmp = 3;    tmp2 = n;    tmp3 = nz;    if (rhstyp[0]=='M' || rhstyp[0]=='m')       m-=n;    READMTC(&tmp2,&tmp3,&tmp,fname,A.a,A.ja,A.ia,	    rhs,&m,rhstyp,&n,&nc,&nz,title,key,type,	    &nrhsix,rhsptr,rhsind,rhsval,&ierr,fnamelen,2,72,8,3);    if (rhstyp[0]=='M' || rhstyp[0]=='m')       m+=n;    if (ierr) {        fprintf(STDERR," ierr = %d\n",ierr);        fprintf(STDERR," error in reading the matrix, stop.\n");	fprintf(fo,"out of memory\n");fclose(fo);         exit(ierr);    }    /*    for (i=0; i<n;i++) {      printf("%4d:\n",i+1);      for (j=A.ia[i];j<A.ia[i+1]; j++)	printf("%16d",A.ja[j-1]);      printf("\n");      fflush(stdout);      for (j=A.ia[i];j<A.ia[i+1]; j++) #if defined _DOUBLE_REAL_ || defined _SINGLE_REAL_	printf("%16.1e",A.a[j-1]);#else	printf("%8.1e%8.1e",A.a[j-1].r,A.a[j-1].i);#endif      printf("\n");      fflush(stdout);    }// end for i    */    SPDAMGINIT(A, &param);    param.dbuff=dbuff;    param.ndbuff=ndbuff;        perm0=SPDPERMNULL;    perm =SPDPERMNULL;    permf=SPDPERMNULL;#ifdef MINIMUM_DEGREE    perm0=SPDPERMMMD;    perm =SPDPERMMMD;    permf=SPDPERMMMD;    //printf("prescribe minimum degree ordering\n");    fprintf(fo,"mmds/mmds|");#elif defined REVERSE_CM    perm0=SPDPERMRCM;    perm =SPDPERMRCM;    permf=SPDPERMRCM;    fprintf(fo,"rcms/rcms|");    //printf("prescribe reverse Cuthill-McKee ordering\n");#elif defined NESTED_DISSECTION    perm0=SPDPERMND;    perm =SPDPERMND;    permf=SPDPERMND;    fprintf(fo,"nds /nds |");    //printf("prescribe nested dissection ordering\n");#elif defined IND_SET    perm0=SPDPERMINDSET;    perm =SPDPERMINDSET;    permf=SPDPERMINDSET;    fprintf(fo,"inds/inds|");    //printf("prescribe independent set ordering\n");#elif defined AMF    perm0=SPDPERMAMF;    perm =SPDPERMAMF;    permf=SPDPERMAMF;    fprintf(fo,"amfs/amfs|");    //printf("prescribe independent set ordering\n");#elif defined PP_PERM    perm0=SPDPERMPP;    perm =SPDPERMPP;    permf=SPDPERMPP;    fprintf(fo,"PPs /PPs |");    //printf("prescribe PP ordering\n");#elif defined MMD_PP    perm0=SPDPERMMMD;    perm =SPDPERMMMD;    permf=SPDPERMPP;    fprintf(fo,"mmds/PPs |");    //printf("prescribe MMD/PP ordering\n");#elif defined AMF_PP    perm0=SPDPERMAMF;    perm =SPDPERMAMF;    permf=SPDPERMPP;    fprintf(fo,"amfs/PPs |");    //printf("prescribe MMD/PP ordering\n");#elif defined RCM_PP    perm0=SPDPERMRCM;    perm =SPDPERMRCM;    permf=SPDPERMPP;    fprintf(fo,"rcms/PPs |");    //printf("prescribe MMD/PP ordering\n");#else    fprintf(fo,"    /    |");#endif    // modify the default settings    SPDAMGGETPARAMS(param, &flags, &elbow, droptols, &condest,		    &restol, &max_it);    // ONLY for mixed reordering strategies it is useful to    // set the 'FINAL_PIVOTING' flag#if !defined RCM_PP && !defined AMF_PP && !defined AMD_PP && !defined MMD_PP && !defined FC_PP && !defined METIS_E_PP && !defined METIS_N_PP     flags&=~FINAL_PIVOTING;#endif    // change flags if mpiluc is desired#ifdef USE_MPILUC    flags|=MULTI_PILUC;#endif    // flags    //flags|=TISMENETSKY_SC;    //flags&=~ENSURE_SPD;    // overwrite the default drop tolerances    droptols[0]=1.0;    droptols[1]=DROP_TOL;     // overwrite the default value for elbow space    elbow=ELBOW;    // overwrite default values for condest    condest=CONDEST;    // overwrite the default value for the residual norm    restol=1e-8;    // overwrite the default value for the maximum number of iterations    max_it=MIN(1.1*n+10,MAX_IT);    // rewrite the updated parameters

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -