📄 mainexpert.c
字号:
#include <stdio.h>#include <stdlib.h>#include <string.h>#include <math.h>#include <blas.h>#include <ilupack.h>#include <ilupackmacros.h>#define MAX_LINE 255#define STDERR stdout#define STDOUT stdout#define PRINT_INFO#define MAX(A,B) (((A)>(B))?(A):(B))#define MIN(A,B) (((A)<(B))?(A):(B))// maximum number of iterations independent on n#define MAX_IT 500// measure for terminating iterative solver#define RESTOL_FUNC(A) sqrt(A)//#define RESTOL_FUNC(A) (A)// reorder the system according to the symmetric minimum degree ordering//#define MINIMUM_DEGREE// reorder the system according to the nested dissection ordering//#define NESTED_DISSECTION // reorder the system according to the reverse Cuthill-McKee ordering//#define REVERSE_CM// reorder the system according to some independent set ordering//#define IND_SET// reorder system using approximate minimum fill by Patrick Amestoy, // Tim Davis and Iain Duff//#define AMF// reorder system using approximate minimum degree by Patrick Amestoy// Tim Davis and Iain Duff//#define AMD// reorder the columns and rows of a system differently using a new unsymmetric// reordering strategy by Yousef Saad//#define PQ_PERM// mixed strategies that finally switch to PQ if necessary//#define MMD_PQ//#define AMF_PQ//#define AMD_PQ//#define RCM_PQ//#define FC_PQ//#define METIS_E_PQ//#define METIS_N_PQ// Minimum Weight Matching interface MC64//#define MC64_RCM_PQ//#define MC64_MMD_PQ//#define MC64_AMF_PQ//#define MC64_AMD_PQ//#define MC64_METIS_E_PQ//#define MC64_METIS_N_PQ// alternative Minimum Weight Matching interface provided by PARDISO//#define MWM_RCM_PQ//#define MWM_MMD_PQ//#define MWM_AMD_PQ//#define MWM_AMF_PQ//#define MWM_METIS_E_PQ#define MWM_METIS_N_PQ// use an iterative solver from SPARSKIT defined by variable SOLVER#define USE_SPARSKIT// variant of PILUC that uses a repeated multiple factorization approach//#define USE_MPILUCint main(int argc, char **argv){ /* SOLVER choice: 1 pcg 2 cgnr 3 bcg 4 dbcg 5 bcgstab 6 tfqmr 7 fom 8 gmres 9 fgmres 10 dqgmres */ int SOLVER=8; /* gmres */ CSRMAT fullmat, A; AMGLEVELMAT PRE, *next; int nlev=0, nprev, nB; int (*perm0)(),(*perm)(),(*permf)(); FILE *fp, *fo; char rhstyp[3], title[72], key[8], type[3], fname[100], foname[100]; char line[MAX_LINE], *tmpstring, timeout[7], residout[7]; int i,j,k,l,fnamelen,n,m,nc,nz,nrhs,tmp0,tmp,tmp2,tmp3,ierr,flags, *invperm, *buff, *ws, *symmmd, *p, *invp, *q, *invq,nLU, nrhsix, *rhsptr, *rhsind; REALS eps, DROP_TOL, condest, CONDEST,droptols[2],amgcancel,val, vb,*rbuff,restol; FLOAT *rhs,*sol,*w, *leftscale, *rightscale, *rhsval, *dbuff; float systime, time_start, time_stop, secnds, timeAx_start, timeAx_stop, secndsAx; int ELBOW, elbow, nnzL,nnzU, nAx=0, nrestart, max_it; ILUPACKPARAM param; size_t nibuff, ndbuff; /* the last argument passed serves as file name */ if (argc!=5) { printf("usage '%s <drop tol.> <bound for L^{-1},U^{-1}> <elbow space> <matrix>'\n",argv[0]); exit(0); } i=0; while (argv[argc-1][i]!='\0') { fname[i]=argv[argc-1][i]; i++; } /* end while */ fname[i]='\0'; fnamelen=i; i=fnamelen-1; while (i>=0 && fname[i]!='/') i--; i++; j=0; while (i<fnamelen && fname[i]!='.') foname[j++]=fname[i++]; while (j<16) foname[j++]=' '; foname[j]='\0'; ELBOW=atoi(argv[argc-2]); CONDEST=atof(argv[argc-3]); DROP_TOL=atof(argv[argc-4]);/*----------------------------------------------------------------------| Read a Harwell-Boeing matrix.| Use readmtc first time to determine sizes of arrays.| Read in values on the second call.|---------------------------------------------------------------------*/ nrhs = 0; tmp0 = 0; if ((fp=fopen(fname,"r"))==NULL) { fprintf(STDERR," file %s not found\n",fname); exit(0); } fclose(fp); READMTC(&tmp0,&tmp0,&tmp0,fname,fullmat.a,fullmat.ja,fullmat.ia, rhs,&nrhs,rhstyp,&n,&nc,&nz,title,key,type, &nrhsix,rhsptr,rhsind,rhsval,&ierr,fnamelen,2,72,8,3); if (ierr) { fprintf(STDERR," ierr = %d\n",ierr); fprintf(STDERR," error in reading the matrix, stop.\n"); switch(ierr) { case 1: fprintf(STDERR,"too many columns\n"); break; case 2: fprintf(STDERR,"too many nonzeros\n"); break; case 3: fprintf(STDERR,"too many columns and nonzeros\n"); break; case 4: fprintf(STDERR,"right hand side has incompatible type\n"); break; case 5: fprintf(STDERR,"too many right hand side entries\n"); break; case 6: fprintf(STDERR,"wrong type (real/complex)\n"); break; } exit(ierr); } printf("Matrix: %s: size (%d,%d), nnz=%d(%4.1lfav.)\n", fname, n,nc, nz,((double)nz)/n); if (fname[fnamelen-1]=='5') fo = fopen("out_mc64","aw"); else fo = fopen("out_normal","aw"); fprintf(fo,"%s|%7.1e|%7.1e|",foname,DROP_TOL,condest); m=1; if (nrhs>0) { printf ("Number of right hand sides supplied: %d \n", nrhs) ; if (rhstyp[1]=='G' || rhstyp[1]=='g') { m++; printf ("Initial solution(s) offered\n") ; } else printf ("\n") ; if (rhstyp[2]=='X' || rhstyp[2]=='x') { m++; printf ("Exact solution(s) provided\n") ; } else printf ("\n") ; } else printf("\n\n\n"); printf("\n"); rhsptr=NULL; rhsind=NULL; rhsval=NULL; if (rhstyp[0]=='M' || rhstyp[0]=='m') { rhsptr=(int *) MALLOC((size_t)(nrhs+1)*sizeof(int),"main:rhsptr"); rhsind=(int *) MALLOC((size_t)nrhsix*sizeof(int), "main:rhsind"); rhsval=(FLOAT *)MALLOC((size_t)nrhsix*sizeof(FLOAT),"main:rhsval"); // no dense right hand side m--; m*=n*MAX(1,nrhs); // in any case we need at least one vector for the r.h.s. m+=n; } else m*=n*MAX(1,nrhs); fullmat.ia=(int *) MALLOC((size_t)(n+1)*sizeof(int),"main:fullmat.ia"); fullmat.ja=(int *) MALLOC((size_t)nz*sizeof(int), "main:fullmat.ja"); fullmat.a =(FLOAT *)MALLOC((size_t)nz*sizeof(FLOAT), "main:fullmat.a"); fullmat.nr=n; fullmat.nc=n; rhs =(FLOAT *) MALLOC((size_t)m*sizeof(FLOAT), "main:rhs"); // advance pointer to reserve space when uncompressing the right hand side if (rhstyp[0]=='M' || rhstyp[0]=='m') rhs+=n; sol =(FLOAT *) MALLOC((size_t)n*sizeof(FLOAT), "main:sol"); dbuff=(FLOAT *) MALLOC(3*(size_t)n*sizeof(FLOAT),"main:dbuff"); ndbuff=3*(size_t)n; tmp = 3; tmp2 = n; tmp3 = nz; if (rhstyp[0]=='M' || rhstyp[0]=='m') m-=n; READMTC(&tmp2,&tmp3,&tmp,fname,fullmat.a,fullmat.ja,fullmat.ia, rhs,&m,rhstyp,&n,&nc,&nz,title,key,type, &nrhsix,rhsptr,rhsind,rhsval,&ierr,fnamelen,2,72,8,3); if (rhstyp[0]=='M' || rhstyp[0]=='m') m+=n; if (ierr) { fprintf(STDERR," ierr = %d\n",ierr); fprintf(STDERR," error in reading the matrix, stop.\n"); fprintf(fo,"out of memory\n");fclose(fo); exit(ierr); } /* for (i=0; i<n;i++) { printf("%4d:\n",i+1); for (j=fullmat.ia[i];j<fullmat.ia[i+1]; j++) printf("%16d",fullmat.ja[j-1]); printf("\n"); fflush(stdout); for (j=fullmat.ia[i];j<fullmat.ia[i+1]; j++) #if defined _DOUBLE_REAL_ || defined _SINGLE_REAL_ printf("%16.1e",fullmat.a[j-1]);#else printf("%8.1e%8.1e",fullmat.a[j-1].r,fullmat.a[j-1].i);#endif printf("\n"); fflush(stdout); }// end for i *//*----------------------------------------------------------------------| Convert the matrix from csc to csr format. First, allocate| space in (fullmat). After conversion, free space occupied by| initial format.|---------------------------------------------------------------------*/ A.nr=A.nc=n; A.ia=(int *) MALLOC((size_t)(n+1)*sizeof(int),"main:A.ia"); A.ja=(int *) MALLOC((size_t)nz*sizeof(int), "main:A.ja"); A.a =(FLOAT *)MALLOC((size_t)nz*sizeof(FLOAT), "main:A.a"); tmp = 1; CSRCSC(&n,&tmp,&tmp,fullmat.a,fullmat.ja,fullmat.ia,A.a,A.ja,A.ia); /* for (i=0; i<n;i++) { printf("%4d:\n",i+1); for (j=A.ia[i];j<A.ia[i+1]; j++) printf("%16d",A.ja[j-1]); printf("\n"); fflush(stdout); for (j=A.ia[i];j<A.ia[i+1]; j++) printf("%8.1e%8.1e",A.a[j-1].r,A.a[j-1].i); printf("\n"); fflush(stdout); }// end for i */ free(fullmat.a); free(fullmat.ja); free(fullmat.ia); // set parameters to the default settings AMGINIT(A, ¶m); param.dbuff=dbuff; param.ndbuff=ndbuff; perm0=PERMNULL; perm =PERMNULL; permf=PERMNULL;#ifdef MINIMUM_DEGREE perm0=PERMMMD; perm =PERMMMD; permf=PERMMMD; //printf("prescribe minimum degree ordering\n"); fprintf(fo,"mmds/mmds|");#elif defined REVERSE_CM perm0=PERMRCM; perm =PERMRCM; permf=PERMRCM; fprintf(fo,"rcms/rcms|"); //printf("prescribe reverse Cuthill-McKee ordering\n");#elif defined NESTED_DISSECTION perm0=PERMND; perm =PERMND; permf=PERMND; fprintf(fo,"nds /nds |"); //printf("prescribe nested dissection ordering\n");#elif defined IND_SET perm0=PERMINDSET; perm =PERMINDSET; permf=PERMINDSET; fprintf(fo,"inds/inds|"); //printf("prescribe independent set ordering\n");#elif defined AMF perm0=PERMAMF; perm =PERMAMF; permf=PERMAMF; fprintf(fo,"amfs/amfs|");#elif defined AMD perm0=PERMAMD; perm =PERMAMD; permf=PERMAMD; fprintf(fo,"amds/amds|");#elif defined PQ_PERM perm0=PERMPQ; perm =PERMPQ; permf=PERMPQ; fprintf(fo,"PQs /PQs |"); //printf("prescribe PQ ordering\n");#elif defined MMD_PQ perm0=PERMMMD; perm =PERMMMD; permf=PERMPQ; fprintf(fo,"mmds/PQs |"); //printf("prescribe MMD/PQ ordering\n");#elif defined AMF_PQ perm0=PERMAMF; perm =PERMAMF; permf=PERMPQ; fprintf(fo,"amfs/PQs |");#elif defined AMD_PQ perm0=PERMAMD; perm =PERMAMD; permf=PERMPQ; fprintf(fo,"amds/PQs |");#elif defined RCM_PQ perm0=PERMRCM; perm =PERMRCM; permf=PERMPQ; fprintf(fo,"rcms/PQs |"); //printf("prescribe MMD/PQ ordering\n");#elif defined FC_PQ perm0=PERMFC; perm =PERMFC; permf=PERMPQ; fprintf(fo,"FCs /PQs |");#elif defined METIS_E_PQ perm0=PERMMETISE; perm =PERMMETISE; permf=PERMPQ; fprintf(fo,"mes /PQs |");#elif defined METIS_N_PQ perm0=PERMMETISN; perm =PERMMETISN; permf=PERMPQ; fprintf(fo,"mns /PQs |");#elif defined MC64_RCM_PQ perm0=PERMMC64RCM; perm =PERMRCM; permf=PERMPQ; fprintf(fo,"mc64rc/PQ|"); //printf("prescribe MC64 ordering\n");#elif defined MC64_MMD_PQ perm0=PERMMC64MMD; perm =PERMMMD; permf=PERMPQ; fprintf(fo,"mc64md/PQ|"); //printf("prescribe MC64 ordering\n");#elif defined MC64_AMF_PQ perm0=PERMMC64AMF; perm =PERMAMF; permf=PERMPQ; fprintf(fo,"mc64af/PQ|"); //printf("prescribe MC64 ordering\n");#elif defined MC64_AMD_PQ perm0=PERMMC64AMD; perm =PERMAMD; permf=PERMPQ; fprintf(fo,"mc64ad/PQ|"); //printf("prescribe MC64 ordering\n");#elif defined MC64_METIS_E_PQ perm0=PERMMC64METISE; perm =PERMMETISE; permf=PERMPQ; fprintf(fo,"mc64me/PQ|"); //printf("prescribe MC64 ordering\n");#elif defined MC64_METIS_N_PQ perm0=PERMMC64METISN; perm =PERMMETISN; permf=PERMPQ; fprintf(fo,"mc64mn/PQ|");
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -