📄 prob_calc.cpp
字号:
space_dim = header.vecSize;
max_len = F;
min_len = M;
gauss_num = header.wgtNum;
if (gauss_num<=0) {fclose(fptr_32f); return -1;}
if (header.fileType&0x0111!=0) {fclose(fptr_32f); return -1;}
int ret=Init_Arrays();
if (ret<0) {fclose(fptr_32f); return ret;};
if (!(exstates = (File_Mixture*)malloc(sizeof(File_Mixture)*state_number+
sizeof(float)*(gauss_num*space_dim4+gauss_num*space_dim4+header.trpNum))))
return -2;
if ((int)fread((void*)exstates, sizeof(File_Mixture), state_number, fptr_32f)<state_number) {
fclose(fptr_32f); free(exstates); return -3;
}
for (i=0; i<state_number; i++) {
if (max_gauss<exstates[i].compNum) max_gauss=exstates[i].compNum;
states[i].compInd=exstates[i].compInd;
states[i].compNum=exstates[i].compNum;
}
means_32f=(float*)(exstates+state_number);
vars_32f=means_32f+gauss_num*space_dim4;
trans=vars_32f+gauss_num*space_dim4;
if ((int)fread((void*)weights, sizeof(float), gauss_num, fptr_32f)<gauss_num) {
fclose(fptr_32f); free(means_32f); free(exstates); return -3;
}
if ((int)fread((void*)means_32f, sizeof(float)*space_dim4, gauss_num, fptr_32f)<gauss_num) {
fclose(fptr_32f); free(means_32f); free(exstates); return -3;
}
if ((int)fread((void*)vars_32f, sizeof(float)*space_dim4, gauss_num, fptr_32f)<gauss_num) {
fclose(fptr_32f); free(means_32f); free(exstates); return -3;
}
if ((int)fread((void*)dets, sizeof(float), gauss_num, fptr_32f)<gauss_num) {
fclose(fptr_32f); free(means_32f); free(exstates); return -3;
}
if ((int)fread((void*)trans, sizeof(float), header.trpNum, fptr_32f)<header.trpNum) {
fclose(fptr_32f); free(means_32f); free(exstates); return -3;
}
fclose(fptr_32f);
/* Convert means and vars to shorts, weights and dets */
/* to int for 16s32s ipp functions */
/* Further pass mean factors to feature producer */
/* Feature calculation in floats, then convert to shorts */
if (!(mul_mean = ippsMalloc_32f(space_dim4*4))) return -2;
Normalize_MeanVar(means_32f,vars_32f);
ippsConvert_32f16s_Sfs(means_32f,means,space_dim4*gauss_num,ippRndNear,-mean_factor);
ippsConvert_32f16s_Sfs(vars_32f,vars,space_dim4*gauss_num,ippRndNear,-var_factor);
if (Save_Short_File(file,&header,exstates,weights,means,vars,dets,mul_mean,trans)<0) {
free(means_32f); free(exstates); return -3;
}
free(exstates);
ippsOutProbPreCalc_32f_I(Weight(0),Det(0),gauss_num);
ready=-1;
return 0;
}
int Prob_Calc::Init_Calc_Short(char* file, int F, int M) {
int i;
FILE *fptr;
Param_File_Header header;
File_Mixture *exstates=NULL;
if (ready!=-2) return -10;
if (!(fptr=fopen(file, "rb"))) return -3;
if (fread((void*)(&header), sizeof(Param_File_Header), 1, fptr)<1) {
fclose(fptr); return -3;
}
if (header.fileType==0) {
fclose(fptr);
return Init_Calc(file,F,M);
}
state_number = header.mixNum;
max_gauss = 1;
space_dim = header.vecSize;
max_len = F;
min_len = M;
gauss_num = header.wgtNum;
if (gauss_num<=0) {fclose(fptr); return -1;}
if (header.fileType!=0x0100) {fclose(fptr); return -1;}
int ret=Init_Arrays();
if (ret<0) {fclose(fptr); return ret;};
if (!(exstates = (File_Mixture*)malloc(sizeof(File_Mixture)*state_number)))
return -2;
if ((int)fread((void*)exstates, sizeof(File_Mixture), state_number, fptr)<state_number) {
fclose(fptr); free(exstates); return -1;
}
for (i=0; i<state_number; i++) {
if (max_gauss<exstates[i].compNum) max_gauss=exstates[i].compNum;
states[i].compInd=exstates[i].compInd;
states[i].compNum=exstates[i].compNum;
}
free(exstates);
if (!(mul_mean = ippsMalloc_32f(space_dim4*2))) return -2;
if ((int)fread((void*)weights, sizeof(float), gauss_num, fptr)<gauss_num) {
fclose(fptr); return -3;
}
if ((int)fread((void*)means, sizeof(short)*space_dim4, gauss_num, fptr)<gauss_num) {
fclose(fptr); return -3;
}
if ((int)fread((void*)vars, sizeof(short)*space_dim4, gauss_num, fptr)<gauss_num) {
fclose(fptr); return -3;
}
if ((int)fread((void*)dets, sizeof(float), gauss_num, fptr)<gauss_num) {
fclose(fptr); return -3;
}
if ((int)fread((void*)mul_mean, sizeof(float), space_dim4, fptr)<space_dim4) {
fclose(fptr); return -3;
}
ippsOutProbPreCalc_32f_I(Weight(0),Det(0),gauss_num);
ready=-1;
return 0;
}
Prob_Calc::~Prob_Calc(void) {
mean_factor = 0;
var_factor = 0;
sum_factor = 0;
state_number = 0;
max_gauss = 0;
space_dim = 0;
gauss_num = 0;
max_len = 0;
min_len = 0;
space_dim4 = 0;
state_number4= 0;
gauss_num4 = 0;
curidx = 0;
lastidx = 0;
delta_delay = 0;
sen_end = false;
type = calcNone;
if (features) ippsFree(features);
if (tmp_prob) ippsFree(tmp_prob);
if (buffer) ippsFree(buffer);
if (mul_mean) ippsFree(mul_mean);
if (flog) fclose(flog);
feat = NULL;
buffer = NULL;
features = NULL;
tmp_prob = NULL;
states = NULL;
weights = NULL;
dets = NULL;
means = NULL;
vars = NULL;
curfeat = NULL;
endfeat = NULL;
lastfeat = NULL;
mul_mean = NULL;
flog = NULL;
ready = -2;
}
bool Prob_Calc::Attach_Feat(Feat_Calc *f) {
if (ready!=-1) return false;
feat=f;
if (!feat) return false;
if (!feat->Ready()) return false;
if (feat->Feature_Length()!=space_dim) return false;
sen_end = false;
curfeat = features;
endfeat = features;
lastfeat = features;
curidx = 0;
lastidx = 0;
delta_delay = feat->Delta_Delay();
if (flog)
feat->Write_LogHeader(flog);
if (!feat->Set_Scale(mean_factor)) return false;
// double delta calculated with coeffs 0.1, 0.1 for features without energy
// not for features with energy because delta is done before CMS and VN
if (!feat->Var_Norm()) {
ippsMulC_32f_I(0.1f,mul_mean+space_dim/3,space_dim/3);
ippsMulC_32f_I(0.01f,mul_mean+space_dim/3+space_dim/3,space_dim/3);
}
if (!feat->Set_Delta(mul_mean)) return false;
if (!feat->Var_Norm()) { /* restore for feature logging */
ippsMulC_32f_I(10.f,mul_mean+space_dim/3,space_dim/3);
ippsMulC_32f_I(100.0f,mul_mean+space_dim/3+space_dim/3,space_dim/3);
}
ready = 0;
return true;
}
bool Prob_Calc::Detach_Feat(void) {
if (ready!=0) return false;
sen_end=true;
feat=NULL;
curfeat=NULL;
endfeat=NULL;
lastfeat=NULL;
curidx=0;
lastidx=0;
delta_delay=0;
ready=-1;
if (flog)
fclose(flog);
flog=NULL;
return true;
}
bool Prob_Calc::Step_Forward(void) {
if (ready!=0) return false;
curfeat+=space_dim4;
curidx++;
if ((sen_end)&&(lastidx==curidx)) {
return false;
} else if (curidx>=max_len-min_len-delta_delay) { // switch to buffer beginning
ippsCopy_16s(curfeat,features,lastfeat-curfeat+delta_delay*space_dim4);
lastfeat=features+(lastfeat-curfeat);
lastidx=lastidx-curidx;
curfeat=features;
curidx=0;
}
return true;
}
int Prob_Calc::Obv_Prob_Vec(int state, float *result, int len) {
int m,num;
if (ready!=0) return -1;
if (!sen_end) {
if (lastidx-curidx<min_len) {
num=feat->Get_Feature(lastfeat,max_len-lastidx,&sen_end);
if (flog) {
for (m=0; m<num; m++) {
float *buf = mul_mean+space_dim4;
ippsConvert_16s32f_Sfs(lastfeat+m*space_dim4,buf,space_dim,mean_factor);
ippsDiv_32f_I(mul_mean,buf,space_dim);
fwrite((void*)buf, sizeof(float), space_dim, flog);
}
}
// here wait if num==0 if features are consumed faster
lastidx+=num;
lastfeat+=num*space_dim4;
}
}
num=lastidx-curidx;
if (len<num) num=len;
short *mean=Mean(state);
short *var=Var(state);
float *det=Det(state);
short *feat=curfeat;
switch (type) {
case calcVect:
ippsLogGauss_Scaled_16s32f_D2(curfeat,space_dim4,mean,var,space_dim,result,num,
det[0],sum_factor);
for (m=1; m<states[state].compNum; m++) {
mean+=space_dim4;
var+=space_dim4;
ippsLogGaussAdd_Scaled_16s32f_D2(curfeat,space_dim4,mean,var,space_dim,result,num,
det[m],sum_factor);
}
break;
case calcVecM:
ippsLogGauss_Scaled_16s32f_D2(curfeat,space_dim4,mean,var,space_dim,result,num,
det[0],sum_factor);
for (m=1; m<states[state].compNum; m++) {
mean+=space_dim4;
var+=space_dim4;
ippsLogGaussMax_Scaled_16s32f_D2(curfeat,space_dim4,mean,var,space_dim,result,num,
det[m],sum_factor);
}
break;
case calcMix:
for (m=0; m<num; m++) {
ippsLogGaussMixture_Scaled_16s32f_D2(feat,mean,var,states[state].compNum,space_dim4,
space_dim,det,result+m,sum_factor);
feat+=space_dim4;
}
break;
case calcMMix:
for (m=0; m<num; m++) {
ippsCopy_32f(det,tmp_prob,states[state].compNum);
ippsLogGaussMultiMix_Scaled_16s32f_D2(mean,var,space_dim4,feat,space_dim,
tmp_prob,states[state].compNum,sum_factor);
ippsLogSum_32f(tmp_prob,result+m,states[state].compNum,ippAlgHintNone);
feat+=space_dim4;
}
break;
case calcVectLow:
ippsLogGauss_LowScaled_16s32f_D2(curfeat,space_dim4,mean,var,space_dim,result,num,
det[0],sum_factor);
for (m=1; m<states[state].compNum; m++) {
mean+=space_dim4;
var+=space_dim4;
ippsLogGaussAdd_LowScaled_16s32f_D2(curfeat,space_dim4,mean,var,space_dim,result,num,
det[m],sum_factor);
}
break;
case calcVecMLow:
ippsLogGauss_LowScaled_16s32f_D2(curfeat,space_dim4,mean,var,space_dim,result,num,
det[0],sum_factor);
for (m=1; m<states[state].compNum; m++) {
mean+=space_dim4;
var+=space_dim4;
ippsLogGaussMax_LowScaled_16s32f_D2(curfeat,space_dim4,mean,var,space_dim,result,num,
det[m],sum_factor);
}
break;
case calcMMixLow:
for (m=0; m<num; m++) {
ippsCopy_32f(det,tmp_prob,states[state].compNum);
ippsLogGaussMultiMix_LowScaled_16s32f_D2(mean,var,space_dim4,feat,space_dim,
tmp_prob,states[state].compNum,sum_factor);
ippsLogSum_32f(tmp_prob,result+m,states[state].compNum,ippAlgHintNone);
feat+=space_dim4;
}
break;
case calcMixLow:
for (m=0; m<num; m++) {
ippsLogGaussMixture_LowScaled_16s32f_D2(feat,mean,var,states[state].compNum,space_dim4,
space_dim,det,result+m,sum_factor);
feat+=space_dim4;
}
break;
case calcNone:
fake_sum=det[0];
for (m=0; m<space_dim4*states[state].compNum; m+=8)
fake_sum+=mean[m];
for (m=0; m<space_dim4*states[state].compNum; m+=8)
fake_sum+=var[m];
for (m=0; m<space_dim4*num; m+=8)
fake_sum+=curfeat[m];
break;
default:
return -1;
}
return num;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -