📄 demo2_02.m
字号:
%
% Demonstrates relative performance of Wiener filter (fixed-gain)
% and Kalman filter (time-varying gain) on random walk estimation
%
% Applied to random walk process with gaussian sampling noise
%
clear all;
close all;
N = 50; % Number of samples of process used in simulations
Q = .01; % Variance of random walk increments
R = 1; % Variance of sampling noise
sigw = sqrt(Q); % Standard deviations
sigv = sqrt(R);
%
% Wiener (fixed) gain
%
W = (Q+(Q*(Q+4*R))^(1/2))/(Q+(Q*(Q+4*R))^(1/2)+2*R);
%
P = 100; % Covariance of initial uncertainty
xbar(1) = sqrt(P)*randn; % Initial value of true process
xhatW(1) = 0; % Initial estimate of true process using Wiender gain
xhatK(1) = 0; % Initial estimate of true process using Kalman gain
t(1) = 0;
rms(1) = sqrt(P);
%
% Simulation loop
%
for k=2:N;
t(k) = k-1;
xbar(k) = xbar(k-1) + sigw*randn; % Random walk
z(k) = xbar(k) + sigv*randn; % Noisy sample
xhatW(k) = xhatW(k-1) + W*(z(k) - xhatW(k-1)); % Wiener filter estimate
P = P + Q;
K = P/(P+R);
xhatK(k) = xhatK(k-1) + K*(z(k) - xhatK(k-1)); % Kalman filter estimate
P = P - K*P;
rms(k) = sqrt(P); % RMS uncdrtainty
end;
%
% Done simulating
%
plot(t,xbar,'b-',t,xhatW,'g-.',t,xhatK,'r--',t,xhatK+rms,'r:',t,xhatK-rms,'r:');
legend('True','Wiener','Kalman','Kalman+Uncert.','Kalman-Uncert.');
title('DEMO #2: Kalman Filter versus Wiener Filter');
xlabel('Discrete Time');
ylabel('Random Walk');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -