⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 thbib.html

📁 有限元学习研究用源代码(老外的),供科研人员参考
💻 HTML
字号:
<h1>References</h1>

<h3><a NAME=""><em>[]</em> Schmelzer
</a></h3> 
<a HREF="http://varga.wias-berlin.de/~schmelze/ibg/thesis.html"> 3D
anisotropic grid generation with intersection-based geometry interface</a>  <em> IMA Preprint Series Nr.1180, Univ. of Minnesota
</em>
<h3><a NAME=""><em>[]</em> Schmelzer
</a></h3> 
<a HREF="http://varga.wias-berlin.de/~schmelze/ibg/thesis.html">Intersection-based grid generation --- programming and reference
manual </a>  <em> WIAS Berlin
</em>
<h3><a NAME=""><em>[]</em> Saxena
</a></h3>
 Octree-based Automatic Mesh Generation for Non-Manifold Domains <em>Engeneering with Computers nr.11, pp.1-14
</em>
<h3><a NAME=""><em>[]</em> Shepard
</a></h3>toward
automatic model generation <em> SCOREC Report nr.9, Rensselaer
Polytechnic Institute, Troy, New York
</em>
<h3><a NAME=""><em>[]</em> Weiler
</a></h3>Topological structures for
geometric modeling <em> PhD Dissertation, Department of Computer and
Systems Engeneering, Rensselaer Polytechnic Institute, Troy, New York
</em>
<h3><a NAME=""><em>[]</em> Hirsch
</a></h3>Differential Topology
 <em>Springer-Verlag NY Heidelberg Berlin
</em>
<h3><a NAME=""><em>[]</em> Morse
</a></h3>The calculus of Variations on
the Large  <em>Amer. Math. Soc. Colloquium Publications, Vol. 18, NY

</em>
<h3><a NAME=""><em>[]</em> Milnor
</a></h3>Morse Theory  <em>Princeton
University Press Princeton
</em>
<h3><a NAME=""><em>[]</em> Sard
</a></h3>The measure of critical points
of differentiable maps.  <em>Bull. Amer. Math. Soc. 48, pp.883-890
</em>
<h3><a NAME=""><em>[]</em> Barnhill
</a></h3>Geometry
Processing for Design and Manufactoring  <em> SIAM Philadelphia
</em>
<h3><a NAME=""><em>[]</em> Hagen
</a></h3>Curve and Surface
Design <em> SIAM Philadelphia
</em>
<h3><a NAME="a"><em>[a]</em> Hagen
</a></h3>Topics in
Surface Modelling <em> SIAM Philadelphia
</em>
<h3><a NAME=""><em>[]</em> Farin
</a></h3>NURBS for Curve and
Surface Design <em> SIAM Philadelphia
</em>
<h3><a NAME=""><em>[]</em> Stoyanov
</a></h3>Marching along
surface/surface intersection curves with an adaptive step length <em>Computer Aided Geometric Design 9 pp. 485-489
</em>
<h3><a NAME=""><em>[]</em> Helmsen
</a></h3>An Efficient Loop Detection and Removal
Algorithm for 3D Surface-based Lithography Simulation <em> In Proc. of
NUPAD IV, pp.3-8
</em>
<h3><a NAME=""><em>[]</em> Scheckler
</a></h3>
Coupling Models and Algorithms for 3D Topography Simulation: Plasma
Etching, Ion Milling and Deposition in SAMPLE-3D. <em> In Proc. of
NUPAD IV, pp.9-14

 </em>
<h3><a NAME=""><em>[]</em> Castillo
</a></h3>Mathematical Aspects of Numerical Grid Generation <em> SIAM
Philadelphia
</em>
<h3><a NAME=""><em>[]</em> Glowinski
</a></h3>Computing Methods in Applied Sciences and Engineering <em> SIAM
Philadelphia
</em>
<h3><a NAME=""><em>[]</em> George
</a></h3>Automatic Mesh
Generation <em> Masson Paris
</em>
<h3><a NAME=""><em>[]</em> Flaverty
</a></h3>Adaptive Methods for Partial
Differential Equations  <em>SIAM Philadelphia
</em>
<h3><a NAME=""><em>[]</em> Sze
</a></h3>VLSI technology <em>McGraw-Hill Book Comp.
</em>
<h3><a NAME=""><em>[]</em>  Ho
</a></h3>SUPREM III --- A
program for Integrated circuit process modeling and simulation <em>Technical Report, No. SEL 83-001
</em>
<h3><a NAME=""><em>[]</em> Tanaka
</a></h3> Three-dimensional arbitrary shape
description for process and device simulators <em> In Proc. of NASECODE
VI conf. pp 317-322

</em>
<h3><a NAME=""><em>[]</em> Hoeppner
</a></h3>Studie zur 3D
Prozessimulation <em> Berlin
</em>
<h3><a NAME=""><em>[]</em> Feudel
</a></h3>TESIM, Technologiesimulator
fuer integrierte Bauelemente <em> Zentrum Mikroelektronik Dresden GmbH
Abt. WBC
</em>
<h3><a NAME=""><em>[]</em> Strecker
</a></h3>DIOS --- Manual <em></em>
<h3><a NAME=""><em>[]</em> Lorenz
</a></h3>COMPOSITE --- a complete modeling program
of silicon technology <em> IEEE Trans. on CAD, vol. CAD-4 nr. 4,
pp.421-430
</em>
<h3><a NAME=""><em>[]</em> Scheckler
</a></h3>Coupling Models and Algorithms for 3D Topography Simulation: Plasma
Etching, Ion Milling and Deposition in SAMPLE-3D. <em> In Proc. of
NUPAD IV, pp.9-14
</em>
<h3><a NAME=""><em>[]</em> Selberherr
</a></h3>Analysis and Simulation
of Semiconductor Devices <em>, Springer,New York
</em>
<h3><a NAME=""><em>[]</em> Gajewski
</a></h3>Der
2D--Bauelementesimulator TOSCA, Nutzerhandbuch <em> Berlin

</em>
<h3><a NAME=""><em>[]</em> Thurner
</a></h3>The
extension of MINIMOS to a three dimensional simulation program <em> In
Proc. of NASECODE V conf., pp 327-332
</em>
<h3><a NAME=""><em>[]</em> Shigyo
</a></h3>Three-dimensional
device simulation using a mixed process/device simulator <em> In
W.L.Engl, editor, Process and Device Modeling. North-Holland
</em>
<h3><a NAME=""><em>[]</em> Toyabe
</a></h3>Methods of three dimensional transient simulation and their
applications to VLSI reliability problems <em> In Proc. of NASECODE V
conf., pp 74-84
</em>
<h3><a NAME=""><em>[]</em> Heiser
</a></h3>Design and Implementation of
a Three Dimensional, General Purpose Semiconductor Device
Simulator <em> PhD thesis, ETH Zuerich published by Hartung-Gorre
Verlag, Konstanz
</em>
<h3><a NAME=""><em>[]</em> Hitschfeld
</a></h3>Grid Generation for 3D Nonplanar Semiconductor Device Structures <em>Simulation of Semiconductor Devices and Processes Vol. 4 edited by:
Fichtner W., Aemmer D., Hartung-Gorre Verlag, Konstanz
</em>
<h3><a NAME=""><em>[]</em> Conti
</a></h3>Grid Generation for
Three-dimensional Semiconductor Device Simulation <em> PhD thesis, ETH
Zuerich published by Hartung-Gorre Verlag, Konstanz
</em>
<h3><a NAME=""><em>[]</em> Hitschfeld
</a></h3>Grid Generation for
Three-Dimensional Non-Rectangular Semiconductor Devices <em> PhD
thesis, ETH Zuerich published by Hartung-Gorre Verlag, Konstanz
</em>
<h3><a NAME=""><em>[]</em> Voronoi
</a></h3>Nouvelle
application des parametres continus a la theorie des formes
quadratiques <em> J. reine angew.  Mathematik 134 pp. 198-287
</em>
<h3><a NAME=""><em>[]</em> Delaunay
</a></h3>Sur la
sphere vide <em> Bull.Acad.Sci. USSR (VII), pp 793-800
</em>
<h3><a NAME=""><em>[]</em> Letniowski
</a></h3> 3-D
Delaunay triangulations for finite element approximations to a
second-order diffusion operator  <em>SIAM J. Sci. Stat. Comput. vol.13,
nr.3, pp 765-770

</em>
<h3><a NAME=""><em>[]</em> Bowyer
</a></h3> Computing Dirichlet
tesselations  <em> The Computer Journal vol.24 nr.2,pp.162-166
</em>
<h3><a NAME=""><em>[]</em> Watson
</a></h3>Computing the
n-dimensional Delaunay tessalation with application to Voronoi
polytopes  <em> The Computer Journal, 24 pp.167-172
</em>
<h3><a NAME=""><em>[]</em> Maus
</a></h3>Delaunay triangulation and the
convex hull of n points in expected linear time <em> BIT, 24 pp.151-163
</em>
<h3><a NAME=""><em>[]</em> Field
</a></h3>Implementing Watson's
algorithm in three dimensions <em> In Proc. of the Sec. Annual ACM
Symp. on Computational Geometry, Yorktown Heights, New York
</em>
<h3><a NAME=""><em>[]</em> Juenger
</a></h3>Computing Correct Delaunay Triangulations <em> Schwerpunktprogramm der
DFG, Report No.183
</em>
<h3><a NAME=""><em>[]</em> Dwyer
</a></h3>Higher-Dimensional Voronoi
Diagrams in Linear Expected Time  <em> Discrete Comput Geom vol.6
nr.4,pp.343-367
</em>
<h3><a NAME=""><em>[]</em> Mehlhorn
</a></h3> On the Construction of Abstract Voronoi Diagrams  <em> Discrete
Comput Geom vol.6 nr.3,pp.211-224
</em>
<h3><a NAME=""><em>[]</em> Dey
</a></h3>Delaunay triangulation in three dimensions with finite precision
arithmetic <em> Computer Aided Geometric Design 9 pp. 457-470

 </em>
<h3><a NAME=""><em>[]</em> Joe
</a></h3>Three-Dimensional Triangulations
from Local Transformations  <em> SIAM on Scientific and Statistical
Computing vol.10,nr.4pp.718-741
</em>
<h3><a NAME=""><em>[]</em> Schroeder
</a></h3>A
combined octree/Delaunay method for fully automatic 3-d mesh
generation <em> Int.J.Numer.Methods Eng., 29:37-55
</em>
<h3><a NAME=""><em>[]</em> Shepard
</a></h3>Automatic
three-dimensional mesh generation by the finite octree technique <em>Int.J.Numer.Methods Eng., 32:709-749
</em>
<h3><a NAME=""><em>[]</em> Ramakrishnan
</a></h3> An Integrated Approach for Automated
Generation of 2/3 Dimensional Finite Element Grids Using Spatial
Occupancy Enumeration and Delaunay Triangulation.
 <em>Int. J. Num. Meth. Eng. Vol. 34, pp. 1035-1050
</em>
<h3><a NAME=""><em>[]</em> Tanigushi
</a></h3>Manual for 3DGEO ---
Automatic mesh generation for 3D fracture system <em> Okayama
University
</em>
<h3><a NAME=""><em>[]</em> Frey
</a></h3>Selective refinement: a new
stategy for automatic node placement in graded triangular meshes <em>Int.J.Num.Meth.Eng.  24, pp.2183-2200
</em>
<h3><a NAME=""><em>[]</em> Cavendish
</a></h3> An approach to automatic three-dimensional finite element mesh
generation  <em> Intern. Journ. for Num. Meth.in Engeneering,
vol.21,329-347
</em>
<h3><a NAME=""><em>[]</em> Cook
</a></h3>Body oriented (natural)
co-ordinates for generating three-dimensional meshes
  <em> Int.J.Num.Meth.Eng. v.8, pp.27-43

</em>
<h3><a NAME=""><em>[]</em> Matsuo
</a></h3> Three-Dimensional Device Simulation with Arbitrary
Curved Boundaries using the Voronoi Discretisation Method  <em>Simulation of Semiconductor Devices and Processes Vol. 4 edited by:
Fichtner W., Aemmer D., Hartung-Gorre Verlag, Konstanz
</em>
<h3><a NAME=""><em>[]</em> Smith
</a></h3>Optimal Moving
Meshes for Process and Device Simulations <em> In Proc. of NUPAD IV
pp.187-196
</em>
<h3><a NAME=""><em>[]</em> Bank
</a></h3>Analysis of
some moving space-time finite element methods <em> SIAM
J. Numer. Anal. vol. 30,nr 1, pp.1-18
</em>
<h3><a NAME=""><em>[]</em> Jin
</a></h3>Generation of
Unstructured Tetrahedral Meshes by Advancing Front Technique  <em>Int. J. Num. Meth. Eng. Vol. 36 pp 1805-1823
</em>
<h3><a NAME=""><em>[]</em> Paolini
</a></h3>An automatic
triangular mesh generator for planar domains  <em> Instituto di Analisi
Numerica Publ.  Nr.632 Pavia
</em>
<h3><a NAME=""><em>[]</em> Lo
</a></h3>Volume Discretization into
Tetrahedra --- II. 3D Triangulation by Advancing Front Approach
 <em>Computers &amp; Structures vol. 39, nr. 5, pp.501-511
</em>
<h3><a NAME=""><em>[]</em> Bank
</a></h3>Refinement algorithms and data structures for regular mesh
refinement <em> In R.Stepleman et al., editors, Scientific Computing,
pp 3-17, North Holland
</em>
<h3><a NAME=""><em>[]</em> Bank
</a></h3>PLTMG: A Software Package
for Solving Elliptic Partial Differential Equations <em> User's Guide
6.0 Society for Industrial and Applied Mathematics
</em>
<h3><a NAME=""><em>[]</em> Chazelle
</a></h3> Triangulating
a Nonconvex Polytop  <em> Discrete Comput Geom vol.5 nr.5,pp.505-526
</em>
<h3><a NAME=""><em>[]</em> Bui
</a></h3>Automatic Mesh
Generation for Finite Element Analysis  <em> Computing vol.44
fasc.4,pp.305-329
</em>
<h3><a NAME=""><em>[]</em> Baker
</a></h3>Nonobtuse Triangulations of Polygons  <em>Discrete Comput Geom vol.3
nr.2,pp.147-168
</em>
<h3><a NAME=""><em>[]</em> Chazelle
</a></h3>Triangulating a Simple
Polygon in Linear Time  <em> Discrete Comput Geom vol.6 nr.5,pp.485-524
</em>
<h3><a NAME=""><em>[]</em> Tam
</a></h3>2D finite
element mesh generation by medial axis subdivision <em></em>
<h3><a NAME=""><em>[]</em> Yang
</a></h3>An
Automated Mesh Refinement Scheme Based On Level-Control Function <em>In Proc. of NUPAD IV, pp.181-186
</em>
<h3><a NAME=""><em>[]</em> Joe
</a></h3>Triangular
meshes for regions of complicated shape <em> Int.J.Num.Meth.Eng, v.23
pp.751-778
</em>
<h3><a NAME=""><em>[]</em> Siebert
</a></h3>A-posteriori error
estimators on anisotropically refined meshes and local refinement of
rectangular and prismatic grids <em> talk on the IMA Summer Program
Minneapolis
</em>
<h3><a NAME=""><em>[]</em> Vilsmeier
</a></h3>Adaptive
Solutions of the Conservation Equations on Unstructured Grids
 <em>9. GAMM Conference on Numerical Methods in Fluid Mechanics 25-27.,
Lausanne
</em>
<h3><a NAME=""><em>[]</em> Vilsmeier
</a></h3>Adaptive
Solutions for Compressible Flows on Unstructured, Strongly Abisotropic
Grids.   <em>1. European Computational Fluid Dynamics Conference,
Brussels

</em>
<h3><a NAME=""><em>[]</em> Letniowski
</a></h3>Three-Dimensional
Delaunay Triangulations for Finite Elements Approximations to a
Second-Order Diffusion Operator  <em>SIAM J Sci. Stat. Comp. Vol. 13
Nr. 3, pp 765-770

</em>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -