⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cokri2.m

📁 kriging算法
💻 M
字号:
function [x0s,s,id,l,k,k0]=cokri2(x,x0,id,model,c,sv,itype,avg,ng,b)
%
% COKRI2 : This function is called from COKRI. The description for input and
%          output is given in COKRI. The only new variables are 'k0' which is
%          the right member matrix of the cokriging system and 'ng' which is
%          the total number of points for block discretization.
% Author: D. Marcotte
% Version 2.0  97/aug/14 
% External subroutines: trans, means
% modified 98/fev/12, C.Lafleur, INRS-Oceanologie (new models added)

x0s=[];s=[];l=[];k=[];k0=[];nc=0;

% here we define the equations for the various covariograms. Any new model
% can be added here.

Gam=['h==0                                              '; % 1. nugget
     'exp(-h)                                           '; % 2. exponential
     'exp(-(h).^2)                                      '; % 3. gaussian
     '1-(1.5*min(h,1)/1-.5*(min(h,1)/1).^3)             '; % 4. spherical
     '1-h                                               '; % 5. linear
     '1 - 2*min(h,1) + min(h,1).^2                      '; % 6. quadratic
     '1 - h.^b                                          '; % 7. power
     'log10(h)                                          '; % 8. logarithmic
     'sin(h) ./ b*h                                     '; % 9. sinc
     'bessel(0,h)                                       '; %10. Bessel
     'exp(-h)    .* cos(b*h)                            '; %11. cosine
     'exp(-h)    .* bessel(0,b*h)                       '; %12. Bessel
     'exp(-h.^2) .* cos(b*h)                            '; %13. cosine
     'exp(-h.^2) .* bessel(0,b*h)                       '; %14. Bessel
     'exp(-h.^2) .* (1 - b*h.^2)                        '; %15.
     '1-3*min(h,1).^2+2*min(h,1).^3                     '; %16. model Trochu
     '(h.^2).*log(max(h,eps))                           '];%17. spline palque mince

% definition of some constants

[n,t]=size(x);
[rp,p]=size(c);
r=rp/p;
[m,d]=size(x0);

% if no samples found in the search radius, return NaN

if n==0,
  x0s=NaN*ones(m/ng,p);
  s=NaN*ones(m/ng,p);
  return
end
cx=[x(:,1:d);x0];

% calculation of left covariance matrix K and right covariance matrix K0

k=zeros(n*p,(n+m)*p);
for i=1:r,

   % calculation of matrix of reduced rotated distances H

   [t]=trans(cx,model,i);
   t=t*t';
   h=sqrt(-2*t+diag(t)*ones(1,n+m)+ones(n+m,1)*diag(t)');
   h=h(1:n,:);
   ji=(i-1)*p+1; js=i*p ;

   % evaluation of the current basic structure
   g=eval(Gam(model(i,1),:));
   k=k+kron(g,c(ji:js,:));
end
k0=k(:,n*p+1:(n+m)*p); k=k(:,1:n*p);

% constraints are added according to cokriging type

if itype==99,

   % the system does not have to be solved
   return
end
if itype==2,

   % cokriging with one non-bias condition (Isaaks and Srivastava, 1990, p.410)

   k=[k,ones(n*p,1);ones(1,n*p),0]; k0=[k0;ones(1,m*p)]; nc=1;
elseif itype>=3,

   % ordinary cokriging (Myers, Math. Geol, 1982)

   t=kron(ones(1,n),eye(p));
   k=[k,t';t,zeros(p,p)];
   k0=[k0;kron(ones(1,m),eye(p))]; nc=p;

%   % cokriging with one non-bias condition in the z direction

   if itype == 3.5,

      t=kron(cx(1:n,d),eye(p));
      k=[k,[t;zeros(p,p)];[t',zeros(p,p+p)]];
      t=kron(cx(n+1:n+m,d)',eye(p));
      k0=[k0;t];
      nc=nc+p;
   end;

   if itype >=4,

      % universal cokriging ; linear drift constraints
      nca=p*d;
      t=kron(cx(1:n,:),eye(p));
      k=[k,[t;zeros(p,nca)];[t',zeros(nca,nc+nca)]];
      t=kron(cx(n+1:n+m,:)',eye(p));
      k0=[k0;t];
      nc=nc+nca;
   end;
   if itype==5,

      % universal cokriging ; quadratic drift constraints

      nca=p*d*(d+1)/2;
      cx2=[];
      for i=1:d,
         for j=i:d,
            cx2=[cx2,[cx(:,i).*cx(:,j)]];
         end
      end
      t=kron(cx2(1:n,:),eye(p));
      k=[k,[t;zeros(nc,nca)];[t',zeros(nca,nc+nca)]];
      t=kron(cx2(n+1:n+m,:)',eye(p));
      k0=[k0;t];
      nc=nc+nca;
   end
end

% columns of k0 are summed up (if necessary) for block cokriging

m=m/ng;
t=[];
for i=1:m,
   for ip=1:p,
      j=ng*p*(i-1)+ip;
      t=[t,means(k0(:,j:p:i*ng*p)')'];
   end
end
k0=t;

t=x(:,d+1:d+p);
if itype<3,

   % if simple cokriging or cokriging with one non bias condition, the means
   % are substracted

   t=(t-ones(n,1)*avg)';
else
   t=t';
end

% removal of lines and columns in K and K0 corresponding to missing values

z=zeros(n*p,1);
z(:)=t;
iz=~isnan(z);
iz2=[iz;ones(nc,1)]~=0;
nz=sum(iz);

% if no samples left, return NaN

if nz==0,
   x0s=nan;
   s=nan;
   return;
else
   k=k(iz2,iz2');
   k0=k0(iz2,:);   
   id=id(iz,:);

   % solution of the cokriging system by gauss elimination

   l=inv(k)*k0;

   % calculation of cokriging estimates

   t2=l(1:nz,:)'*z(iz);
   t=zeros(p,m);
   t(:)=t2;

   % if simple or cokriging with one constraint, means are added back

   if itype<3,
      t=t'+ones(m,1)*avg;
   else
      t=t';
   end
   x0s=t;

   % calculation of cokriging variances

   s=kron(ones(m,1),sv);
   t=zeros(p,m);
   t(:)=diag(l'*k0);
   s=s-t';
end



⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -