📄 matrix_lti.cpp
字号:
// Copyright (C) 2002 Klaas Gadeyne <first dot last at gmail dot com>// // This program is free software; you can redistribute it and/or modify// it under the terms of the GNU Lesser General Public License as published by// the Free Software Foundation; either version 2.1 of the License, or// (at your option) any later version.// // This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU Lesser General Public License for more details.// // You should have received a copy of the GNU Lesser General Public License// along with this program; if not, write to the Free Software// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.// #include "../config.h"#ifdef __MATRIXWRAPPER_LTI__#include <iostream>#include "matrix_LTI.h"#include <ltilib/ltiMatrixInversion.h>#include <ltilib/ltiMatrixDecomposition.h>#include <ltilib/ltiSymmetricMatrixInversion.h>///////////////////// CLASS MATRIX /////////////////////// Passing the constructor arguments...MyMatrix::Matrix() : ltiMatrix() {}MyMatrix::Matrix(int num_rows, int num_cols) : ltiMatrix(num_rows, num_cols, 0.0){}// DestructorMyMatrix::~Matrix(){}// Copy constructorMyMatrix::Matrix(const MyMatrix& a) : ltiMatrix(a){}// This is a bad solution, but necessary if the base class is// ill-designedMyMatrix::Matrix(const ltiMatrix & a) : ltiMatrix(a){}// Number of Rows/Colsunsigned int MyMatrix::rows() const { return ((ltiMatrix)(*this)).rows();}unsigned int MyMatrix::columns() const { return ((ltiMatrix)(*this)).columns();}MyRowVector MyMatrix::rowCopy(unsigned int r) const{ ltiMatrix temp = (ltiMatrix) *this; return (MyRowVector) temp.getRowCopy(r-1);}MyColumnVector MyMatrix::columnCopy(unsigned int c) const{ ltiMatrix temp = (ltiMatrix) *this; return (MyColumnVector) temp.getColumnCopy(c-1);}double& MyMatrix::operator()(unsigned int a, unsigned int b) { //ltiMatrix & op1 = (*this); return this->at(a-1,b-1);}const double MyMatrix::operator()(unsigned int a, unsigned int b) const{ //ltiMatrix op1(*this); return this->at(a-1,b-1);}const bool MyMatrix::operator==(const MyMatrix& a) const{ const ltiMatrix& op1 = *this; const ltiMatrix& op2 = a; return (op1 == op2);}// MATRIX - SCALAR operatorsMyMatrix& MyMatrix::operator+= (double a){ ltiMatrix & op1 = (*this); op1 += a; return (MyMatrix&) op1;}MyMatrix& MyMatrix::operator-= (double a){ ltiMatrix & op1 = (*this); op1 -= a; return (MyMatrix&) op1;}MyMatrix& MyMatrix::operator*= (double a){ ltiMatrix & op1 = (*this); op1 *= a; return (MyMatrix&) op1;}MyMatrix MyMatrix::operator+ (double a) const{ ltiMatrix op1(*this); op1 += a; return (MyMatrix) op1;}MyMatrix MyMatrix::operator- (double a) const{ ltiMatrix op1(*this); op1 -= a; return (MyMatrix) op1;}MyMatrix MyMatrix::operator* (double a) const{ ltiMatrix op1(*this); op1 *= a; return (MyMatrix) op1;}MyMatrix& MyMatrix::operator/= (double a){ ltiMatrix & op1 = (*this); op1 /= a; return (MyMatrix&) op1;}// MATRIX - MATRIX OperatorsMyMatrix MyMatrix::operator- (const MyMatrix& a) const{ ltiMatrix op1 = (*this); return (MyMatrix) (op1.subtract(a));}MyMatrix MyMatrix::operator+ (const MyMatrix& a) const{ ltiMatrix op1 = (*this); return (MyMatrix) (op1.add(a));}MyMatrix MyMatrix::operator* (const MyMatrix& a) const{ ltiMatrix op1 = (*this); return (MyMatrix) (op1.multiply(a));}MyMatrix MyMatrix::operator/ (double b) const{ ltiMatrix op1(*this); op1 /= b; return (MyMatrix) op1;}MyMatrix & MyMatrix::operator+= (const MyMatrix& a){ ltiMatrix & op1 = (*this); op1 += a; return (MyMatrix &) op1;}MyMatrix & MyMatrix::operator-= (const MyMatrix& a){ ltiMatrix & op1 = (*this); op1 -= a; return (MyMatrix &) op1;}// MATRIX - VECTOR OperatorsMyColumnVector MyMatrix::operator* (const MyColumnVector &b) const{ const ltiMatrix& op1 = *this; ltiColumnVector op2(b); return (MyColumnVector) op1.multiply(op2);}// Set all elements equal to aMyMatrix &MyMatrix::operator=(const double a){ ltiMatrix & op1 = (*this); op1.fill(a,0,0,(*this).rows(),(*this).columns()); return (MyMatrix&) op1;}MyMatrix MyMatrix::transpose() const{ ltiMatrix base(*this); base.transpose(); return (MyMatrix) base;}double MyMatrix::determinant() const{ ltiMatrix & base = (ltiMatrix &) *this; lti::matrix<double> tmp; tmp.resize(base.size()); for (int i=0;i<tmp.rows();i++) for (int j=0;j<tmp.columns();j++) { tmp.at(i,j)=(double)(base.at(i,j)); } lti::luDecomposition<double> lu; return lu.det(tmp);}MyMatrix MyMatrix::inverse() const{ lti::matrixInversion<double> inv; ltiMatrix base(*this); inv.apply(base); return (MyMatrix) base;}int MyMatrix::convertToSymmetricMatrix(MySymmetricMatrix& sym){ // test if matrix is square matrix assert(this->rows() == this->columns() ); // if necessairy, resize sym // only check cols or rows. Symmetric matrix is square. if ( sym.rows() != this->rows() ) sym.resize(this->rows()); // copy elements for ( unsigned int i=0; i<this->rows(); i++ ) for ( unsigned int j=0; j<=i; j++ ) { sym[i][j] = (*this)[i][j]; sym[j][i] = (*this)[i][j]; } return 0;}// get sub matrixMyMatrix MyMatrix::sub(int i_start, int i_end, int j_start , int j_end) const{ ltiMatrix m(*this,i_start-1,i_end-1, j_start-1,j_end-1); return (MyMatrix) m;}voidMyMatrix::resize(unsigned int i, unsigned int j, bool copy, bool initialize){ ltiMatrix& base = (ltiMatrix &) *this; base.resize(i,j, copy, initialize);}/////////////////////////////// CLASS SYMMETRIC MATRIX ///////////////////////////////MySymmetricMatrix::SymmetricMatrix() : ltiSymmetricMatrix() {}MySymmetricMatrix::SymmetricMatrix(int n) : ltiSymmetricMatrix(n,n) {}// Copy constructorMySymmetricMatrix::SymmetricMatrix(const SymmetricMatrix& a) : ltiSymmetricMatrix(a){}MySymmetricMatrix::SymmetricMatrix(const ltiSymmetricMatrix & a) : ltiSymmetricMatrix(a){}// DestructorMySymmetricMatrix::~SymmetricMatrix(){}// Ask Number of Rows and Columnsunsigned int MySymmetricMatrix::rows() const { return (((ltiSymmetricMatrix)(*this)).rows());}unsigned int MySymmetricMatrix::columns() const { return (((ltiSymmetricMatrix)(*this)).rows());}MySymmetricMatrix MySymmetricMatrix::transpose() const {return (*this);}MySymmetricMatrix MySymmetricMatrix::inverse() const{ lti::matrixInversion<double> inv; ltiSymmetricMatrix base(*this); inv.apply(base); return (MySymmetricMatrix) base;}double MySymmetricMatrix::determinant() const{ ltiSymmetricMatrix & base = (ltiSymmetricMatrix &) *this; lti::matrix<double> tmp; tmp.resize(base.size()); for (int i=0;i<tmp.rows();i++) for (int j=0;j<tmp.columns();j++) { tmp.at(i,j)=(double)(base.at(i,j)); } lti::luDecomposition<double> lu; return lu.det(tmp);}double& MySymmetricMatrix::operator()(unsigned int a, unsigned int b) { ltiSymmetricMatrix & op1 = (*this); // only fill in lower triangle if (a < b) return op1.at(b-1,a-1); else return op1.at(a-1,b-1);}const double MySymmetricMatrix::operator()(unsigned int a, unsigned int b) const{ ltiSymmetricMatrix op1(*this); // only fill in lower triangle if (a < b) return op1.at(b-1,a-1); else return op1.at(a-1,b-1);}const bool MySymmetricMatrix::operator==(const MySymmetricMatrix& a) const{ const ltiSymmetricMatrix& op1 = *this; const ltiSymmetricMatrix& op2 = a; return (op1 == op2);}// MATRIX - SCALAR operatorsMySymmetricMatrix& MySymmetricMatrix::operator=(const double a){ ltiSymmetricMatrix temp = (ltiSymmetricMatrix) *this; temp.fill(a,0,0,temp.rows(),temp.columns()); *this = (MySymmetricMatrix) temp; return *this;}// MATRIX - SCALAR operatorsMySymmetricMatrix& MySymmetricMatrix::operator +=(double a){ ltiSymmetricMatrix & op1 = (*this); op1 += a; return (MySymmetricMatrix&) op1;}MySymmetricMatrix& MySymmetricMatrix::operator -=(double a){ ltiSymmetricMatrix & op1 = (*this); op1 -= a; return (MySymmetricMatrix&) op1;}MySymmetricMatrix& MySymmetricMatrix::operator *=(double b){ ltiSymmetricMatrix & op1 = (*this); op1 *= b; return (MySymmetricMatrix&) op1;} MySymmetricMatrix& MySymmetricMatrix::operator /=(double b){ ltiSymmetricMatrix & op1 = (*this); op1 /= b; return (MySymmetricMatrix&) op1;}MySymmetricMatrix MySymmetricMatrix::operator+ (double a) const{ ltiSymmetricMatrix op1(*this); op1 += a; return (MySymmetricMatrix) op1;}MySymmetricMatrix MySymmetricMatrix::operator- (double a) const{ ltiSymmetricMatrix op1(*this); op1 -= a; return (MySymmetricMatrix) op1;}MySymmetricMatrix MySymmetricMatrix::operator* (double a) const{ ltiSymmetricMatrix op1(*this); op1 *= a; return (MySymmetricMatrix) op1;}MySymmetricMatrix MySymmetricMatrix::operator/ (double b) const{ ltiSymmetricMatrix op1(*this); op1 /= b; return (MySymmetricMatrix) op1;}// SYMMETRICMATRIX - MATRIX operatorsMyMatrix& MySymmetricMatrix::operator +=(const MyMatrix& a){ ltiSymmetricMatrix & op1 = (*this); const ltiMatrix & op2 = a; op1 += op2; return (MyMatrix &) op1;}MyMatrix& MySymmetricMatrix::operator -=(const MyMatrix& a){ ltiSymmetricMatrix & op1 = (*this); const ltiMatrix & op2 = a; op1 -= op2; return (MyMatrix &) op1;}MyMatrix MySymmetricMatrix::operator+ (const MyMatrix &a) const{ ltiMatrix op1(*this); return (MyMatrix) (op1.add(a));}MyMatrix MySymmetricMatrix::operator- (const MyMatrix &a) const{ ltiMatrix op1(*this); return (MyMatrix) (op1.subtract(a));}MyMatrix MySymmetricMatrix::operator* (const MyMatrix &a) const{ ltiMatrix op1(*this); return (MyMatrix) (op1.multiply(a));}MyMatrix& MyMatrix::operator =(const MySymmetricMatrix& a){ *this =(MyMatrix) a; return *this;}MySymmetricMatrix& MySymmetricMatrix::operator +=(const MySymmetricMatrix& a){ ltiSymmetricMatrix & op1 = (*this); const ltiSymmetricMatrix & op2 = a; op1 += op2; return (MySymmetricMatrix &) op1;}MySymmetricMatrix& MySymmetricMatrix::operator -=(const MySymmetricMatrix& a){ ltiSymmetricMatrix & op1 = (*this); const ltiSymmetricMatrix & op2 = a; op1 -= op2; return (MySymmetricMatrix &) op1;}MySymmetricMatrixMySymmetricMatrix::operator+ (const MySymmetricMatrix &a) const{ ltiSymmetricMatrix op1 = (*this); op1 += a; return (MySymmetricMatrix &) op1;}MySymmetricMatrixMySymmetricMatrix::operator- (const MySymmetricMatrix &a) const{ ltiSymmetricMatrix op1 = (*this); op1 -= a; return (MySymmetricMatrix &) op1;}MyMatrix MySymmetricMatrix::operator* (const MySymmetricMatrix &a) const{ ltiSymmetricMatrix op1 = (*this); return (MyMatrix) (op1.multiply(a));}MyColumnVector MySymmetricMatrix::operator* (const MyColumnVector &b) const{ const ltiSymmetricMatrix& op1 = (const ltiSymmetricMatrix&) *this; ltiColumnVector op2 = b; return (MyColumnVector) op1.multiply(op2);}MyMatrix MySymmetricMatrix::sub(int i_start, int i_end, int j_start , int j_end) const{ // first copy all elements from lower triangle to upper triangle unsigned int r = this->rows(); unsigned int c = this->columns(); ltiMatrix copy = *this; for (unsigned int i=0; i<r; i++) for (unsigned int j=0; j<=i; j++) copy.at(j,i) = copy.at(i,j); ltiMatrix m(copy,i_start-1,i_end-1, j_start-1,j_end-1); return (MyMatrix) m;}voidMySymmetricMatrix::resize(unsigned int i, bool copy, bool initialize){ ltiSymmetricMatrix& base = (ltiSymmetricMatrix &) *this; base.resize(i, i, copy, initialize);}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -