📄 descendant_iterator.inl
字号:
/*******************************************************************************
Tree Container Library: Generic container library to store data in tree-like structures.
Copyright (c) 2006 Mitchel Haas
This software is provided 'as-is', without any express or implied warranty.
In no event will the author be held liable for any damages arising from
the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented;
you must not claim that you wrote the original software.
If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such,
and must not be misrepresented as being the original software.
3. The above copyright notice and this permission notice may not be removed
or altered from any source distribution.
For complete documentation on this library, see http://www.datasoftsolutions.net
Email questions, comments or suggestions to mhaas@datasoftsolutions.net
*******************************************************************************/
template<typename stored_type, typename tree_type, typename container_type, typename tree_category_type>
tcl::const_pre_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>& tcl::const_pre_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>::operator ++()
{
if ( !it.node()->empty() ) { // any children?
node_stack.push(it); // yes. push current pos
it = node()->begin(); // and goto first child
} else {
++it; // no children. incr to next sibling if present
// while stack not empty and no next sibling
while ( !node_stack.empty() && it == (node_stack.top()).node()->end() ) {
it = node_stack.top(); // pop parent
node_stack.pop();
++it; // and see if it's got a next sibling
}
}
return *this;
}
template<typename stored_type, typename tree_type, typename container_type, typename tree_category_type>
tcl::const_pre_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>& tcl::const_pre_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>::operator --()
{
typedef typename tree_category_type::const_iterator iterator_type;
if ( it == pTop_node->end() ) { // at end?
// yes. need to set up stack to state just before end
rit = pTop_node->children.rbegin(); // going backwards
if ( rit != pTop_node->children.rend() ) { // insure there's children
if ( !(*rit)->empty() ) { // last node have children?
do { // find the last child of this node
++rit; // incr reverse iter..
it = iterator_type(rit.base(), (it != pTop_node->end() ? node() : pTop_node)); // ..to convert to fwd iter correctly
node_stack.push(it); // push parents on the way down
rit = node()->children.rbegin(); // get last child again
} while ( !(*rit)->empty() ); // while last child has children
}
++rit; // incr reverse iter
it = iterator_type(rit.base(), (it != pTop_node->end() ? node() : pTop_node)); // to convert to forward iter correctly
}
} else { // not at end.
if ( it != node()->parent()->begin() ) { // is this first sibling?
--it; // no. ok to decr to next sibling
if (!it.node()->empty()) { // children present?
do { // yes. get deepest last child
node_stack.push(it); // first push current
it = iterator_type(node()->children.end(), node());
--it; // then go to last child
} while ( !it.node()->empty() ); // while children present
}
} else { // first sibling
it = node_stack.top(); // just need to goto parent
node_stack.pop();
}
}
return *this;
}
template<typename stored_type, typename tree_type, typename container_type, typename tree_category_type>
tcl::const_post_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>::const_post_order_descendant_iterator(const tree_category_type* pTop_node_)
{
pTop_node = pTop_node_; // save invoked node
it = pTop_node->begin(); // goto first child
if ( it != pTop_node->end()) {
if ( !it.node()->empty() ) { // have children of it's own?
do { // goto deepest first child, while pushing parents
node_stack.push(it);
it = node()->begin();
} while ( !it.node()->empty() );
}
}
}
template<typename stored_type, typename tree_type, typename container_type, typename tree_category_type>
tcl::const_post_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>& tcl::const_post_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>::operator ++()
{
const typename tree_category_type::const_iterator it_end = node()->parent()->end(); // end sibling
++it; // advance to next sibling, if present
if ( it != it_end && !it.node()->empty() ) { // next sibling present, and has children?
do { // goto deepest first child while pushing parents
node_stack.push(it);
it = node()->begin();
} while ( !it.node()->empty() );
} else { // it is past last sibling, or it has no children
// if valid it and it has no childrent, were done
if ( !node_stack.empty() && it == (node_stack.top()).node()->end() ) {
// it is past last sibling, and pushed parents exist. move back up to parent
it = node_stack.top();
node_stack.pop();
}
}
return *this;
}
template<typename stored_type, typename tree_type, typename container_type, typename tree_category_type>
tcl::const_post_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>& tcl::const_post_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>::operator --()
{
typedef typename tree_category_type::const_iterator iterator_type;
if ( it == pTop_node->end() ) { // at end?
typename container_type::const_reverse_iterator rit = pTop_node->children.rbegin();
++rit;
it = iterator_type(rit.base(), pTop_node); // goto last sibling of top node
} else { // not at end
if ( !node()->empty() ) { // children present?
typename container_type::const_reverse_iterator rit = node()->children.rbegin();
node_stack.push(it);
++rit; // push parent and go to last child
it = iterator_type(rit.base(), node());
} else { // no children present
if ( it != node()->parent()->begin() ) { // at first sibling?
--it; // no. just goto prev sibling
} else { // at first sibling. work our way up until not first sibling
while ( !node_stack.empty() && it == node_stack.top().node()->begin())
{
it = node_stack.top();
node_stack.pop();
}
--it; // then goto prev sibling
}
}
}
return *this;
}
template<typename stored_type, typename tree_type, typename container_type, typename tree_category_type>
tcl::const_level_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>& tcl::const_level_order_descendant_iterator<stored_type, tree_type, container_type, tree_category_type>::operator ++()
{
const typename tree_category_type::const_iterator it_end = node()->parent()->end();
node_queue.push(it); // push current pos node in queue
++it; // and goto next sibling if present
if ( it == it_end ) { // past last sibling? If not, we're done.
while ( !node_queue.empty() ) { // yes. Insure queue not empty
it = node_queue.front(); // pull pos off queue
node_queue.pop(); // this should be the start pos of level just traversed
if ( !it.node()->empty() ) { // have children?
it = node()->begin(); // yes. descend to start of next level
break;
} else if ( node_queue.empty() ) { // no children. is queue empty?
it = pTop_node->end(); // yes. at end
return *this;
}
}
}
return *this;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -