📄 expm1.c
字号:
/* expm1.c - math routines *//* Copyright 1992 Wind River Systems, Inc. *//*modification history--------------------01c,20sep92,smb documentation additions.01b,30jul92,kdl marked routine NOMANUAL.01a,08jul92,smb documentation.*//*DESCRIPTION** This file includes a support routine (expm1()) which is used by* other portions of the UCB ANSI C library.** Copyright (c) 1985 Regents of the University of California.* All rights reserved.** Redistribution and use in source and binary forms are permitted* provided that the above copyright notice and this paragraph are* duplicated in all such forms and that any documentation,* advertising materials, and other materials related to such* distribution and use acknowledge that the software was developed* by the University of California, Berkeley. The name of the* University may not be used to endorse or promote products derived* from this software without specific prior written permission.* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.** All recipients should regard themselves as participants in an ongoing* research project and hence should feel obligated to report their* experiences (good or bad) with these elementary function codes, using* the sendbug(8) program, to the authors.** SEE ALSO: American National Standard X3.159-1989** NOMANUAL*/#include "vxWorks.h"#include "math.h"#if defined(vax)||defined(tahoe) /* VAX D format */#ifdef vax#define _0x(A,B) 0x/**/A/**/B#else /* vax */#define _0x(A,B) 0x/**/B/**/A#endif /* vax *//* static double *//* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 *//* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC *//* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 *//* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};static long lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)};static long invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};#define ln2hi (*(double*)ln2hix)#define ln2lo (*(double*)ln2lox)#define lnhuge (*(double*)lnhugex)#define invln2 (*(double*)invln2x)#else /* defined(vax)||defined(tahoe) */static doubleln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */#endif /* defined(vax)||defined(tahoe) *//****************************************************************************** expm1 -** EXPM1(X)* RETURN THE EXPONENTIAL OF X MINUS ONE* DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)* CODED IN C BY K.C. NG, 1/19/85;* REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.** Required system supported functions:* scalb(x,n)* copysign(x,y)* finite(x)** Kernel function:* exp__E(x,c)** Method:* 1. Argument Reduction: given the input x, find r and integer k such* that* x = k*ln2 + r, |r| <= 0.5*ln2 .* r will be represented as r := z+c for better accuracy.** 2. Compute EXPM1(r)=exp(r)-1 by** EXPM1(r=z+c) := z + exp__E(z,c)** 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).** Remarks:* 1. When k=1 and z < -0.25, we use the following formula for* better accuracy:* EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )* 2. To avoid rounding error in 1-2^-k where k is large, we use* EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }* when k>56.** Special cases:* EXPM1(INF) is INF, EXPM1(NaN) is NaN;* EXPM1(-INF)= -1;* for finite argument, only EXPM1(0)=0 is exact.** Accuracy:* EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with* 1,166,000 random arguments on a VAX, the maximum observed error was* .872 ulps (units of the last place).** Constants:* The hexadecimal values are the intended ones for the following constants.* The decimal values may be used, provided that the compiler will convert* from decimal to binary accurately enough to produce the hexadecimal values* shown.** NOMANUAL*/double expm1(x)double x;{ static double one=1.0, half=1.0/2.0; double scalb(), copysign(), exp__E(), z,hi,lo,c; int k,finite();#if defined(vax)||defined(tahoe) static prec=56;#else /* defined(vax)||defined(tahoe) */ static prec=53;#endif /* defined(vax)||defined(tahoe) */#if !defined(vax)&&!defined(tahoe) if(x!=x) return(x); /* x is NaN */#endif /* !defined(vax)&&!defined(tahoe) */ if( x <= lnhuge ) { if( x >= -40.0 ) { /* argument reduction : x - k*ln2 */ k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */ hi=x-k*ln2hi ; z=hi-(lo=k*ln2lo); c=(hi-z)-lo; if(k==0) return(z+exp__E(z,c)); if(k==1) if(z< -0.25) {x=z+half;x +=exp__E(z,c); return(x+x);} else {z+=exp__E(z,c); x=half+z; return(x+x);} /* end of k=1 */ else { if(k<=prec) { x=one-scalb(one,-k); z += exp__E(z,c);} else if(k<100) { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;} else { x = exp__E(z,c)+z; z=one;} return (scalb(x+z,k)); } } /* end of x > lnunfl */ else /* expm1(-big#) rounded to -1 (inexact) */ if(finite(x)) { ln2hi+ln2lo; return(-one);} /* expm1(-INF) is -1 */ else return(-one); } /* end of x < lnhuge */ else /* expm1(INF) is INF, expm1(+big#) overflows to INF */ return( finite(x) ? scalb(one,5000) : x);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -