📄 log1p.c
字号:
/* log1p.c - math routines *//* Copyright 1992 Wind River Systems, Inc. *//*modification history--------------------01b,30jul92,kdl marked routine NOMANUAL.01a,08jul92,smb documentation.*//** DESCRIPTION** This file includes a support routine (log1p()) which is used by* other portions of the UCB ANSI C library.*** Copyright (c) 1985 Regents of the University of California.* All rights reserved.** Redistribution and use in source and binary forms are permitted* provided that the above copyright notice and this paragraph are* duplicated in all such forms and that any documentation,* advertising materials, and other materials related to such* distribution and use acknowledge that the software was developed* by the University of California, Berkeley. The name of the* University may not be used to endorse or promote products derived* from this software without specific prior written permission.* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.** All recipients should regard themselves as participants in an ongoing* research project and hence should feel obligated to report their* experiences (good or bad) with these elementary function codes, using* the sendbug(8) program, to the authors.** #ifndef lint* static char sccsid[] = "@(#)log1p.c 5.3 (Berkeley) 6/30/88";* #endif * not lint ** * SEE ALSO: American National Standard X3.159-1989* * NOMANUAL* */#include "vxWorks.h"#include "math.h"#if defined(vax)||defined(tahoe) /* VAX D format */#include <errno.h>#ifdef vax#define _0x(A,B) 0x/**/A/**/B#else /* vax */#define _0x(A,B) 0x/**/B/**/A#endif /* vax *//* static double *//* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 *//* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC *//* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)};#define ln2hi (*(double*)ln2hix)#define ln2lo (*(double*)ln2lox)#define sqrt2 (*(double*)sqrt2x)#else /* defined(vax)||defined(tahoe) */static doubleln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */#endif /* defined(vax)||defined(tahoe) *//*************************************************************************** log1p -** LOG1P(x)* RETURN THE LOGARITHM OF 1+x* DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)* CODED IN C BY K.C. NG, 1/19/85;* REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.** Required system supported functions:* scalb(x,n)* copysign(x,y)* logb(x)* finite(x)** Required kernel function:* log__L(z)** Method :* 1. Argument Reduction: find k and f such that* 1+x = 2^k * (1+f),* where sqrt(2)/2 < 1+f < sqrt(2) .** 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)* = 2s + 2/3 s**3 + 2/5 s**5 + .....,* log(1+f) is computed by** log(1+f) = 2s + s*log__L(s*s)* where* log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))** See log__L() for the values of the coefficients.** 3. Finally, log(1+x) = k*ln2 + log(1+f).** Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers* n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last* 20 bits (for VAX D format), or the last 21 bits ( for IEEE* double) is 0. This ensures n*ln2hi is exactly representable.* 2. In step 1, f may not be representable. A correction term c* for f is computed. It follows that the correction term for* f - t (the leading term of log(1+f) in step 2) is c-c*x. We* add this correction term to n*ln2lo to attenuate the error.*** Special cases:* log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;* log1p(INF) is +INF; log1p(-1) is -INF with signal;* only log1p(0)=0 is exact for finite argument.** Accuracy:* log1p(x) returns the exact log(1+x) nearly rounded. In a test run* with 1,536,000 random arguments on a VAX, the maximum observed* error was .846 ulps (units in the last place).** Constants:* The hexadecimal values are the intended ones for the following constants.* The decimal values may be used, provided that the compiler will convert* from decimal to binary accurately enough to produce the hexadecimal values* shown.* * NOMANUAL*/double log1p(x)double x;{ static double zero=0.0, negone= -1.0, one=1.0, half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */ double logb(),copysign(),scalb(),log__L(),z,s,t,c; int k,finite();#if !defined(vax)&&!defined(tahoe) if(x!=x) return(x); /* x is NaN */#endif /* !defined(vax)&&!defined(tahoe) */ if(finite(x)) { if( x > negone ) { /* argument reduction */ if(copysign(x,one)<small) return(x); k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k); if(z+t >= sqrt2 ) { k += 1 ; z *= half; t *= half; } t += negone; x = z + t; c = (t-x)+z ; /* correction term for x */ /* compute log(1+x) */ s = x/(2+x); t = x*x*half; c += (k*ln2lo-c*x); z = c+s*(t+log__L(s*s)); x += (z - t) ; return(k*ln2hi+x); } /* end of if (x > negone) */ else {#if defined(vax)||defined(tahoe) extern double infnan(); if ( x == negone ) return (infnan(-ERANGE)); /* -INF */ else return (infnan(EDOM)); /* NaN */#else /* defined(vax)||defined(tahoe) */ /* x = -1, return -INF with signal */ if ( x == negone ) return( negone/zero ); /* negative argument for log, return NaN with signal */ else return ( zero / zero );#endif /* defined(vax)||defined(tahoe) */ } } /* end of if (finite(x)) */ /* log(-INF) is NaN */ else if(x<0) return(zero/zero); /* log(+INF) is INF */ else return(x);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -