⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 decbin.s

📁 VXWORKS源代码
💻 S
📖 第 1 页 / 共 2 页
字号:
|  if the exp was positive, and added if it was negative.  The purpose|  of this is to reduce the value of the exponent and the possibility|  of error in calculation of __x_pwrten.||  1. Branch on the sign of the adjusted exponent.|  2p.(positive exp)|   2. Check M16 and the digits in lwords 2 and 3 in decending order.|   3. Add one for each zero encountered until a non-zero digit.|   4. Subtract the count from the exp.|   5. Check if the exp has crossed zero in #3 above|  make the exp abs|	   and set SE.|	6. Multiply the mantissa by 10**count.|  2n.(negative exp)|   2. Check the digits in lwords 3 and 2 in decending order.|   3. Add one for each zero encountered until a non-zero digit.|   4. Add the count to the exp.|   5. Check if the exp has crossed zero in #3 above|  clear SE.|   6. Divide the mantissa by 10**count.||  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than|   any adjustment due to append/strip zeros will drive the resultane|   exponent towards zero.  Since all __x_pwrten constants with a power|   of 27 or less are exact, there is no need to use this routine to|   attempt to lessen the resultant exponent.|| Register usage:||  __x_ap_st_z:|	(*)  d0: temp digit storage|	(*)  d1: zero count|	(*)  d2: digit count|	(*)  d3: offset pointer|	( )  d4: first word of bcd|	(*)  d5: lword counter|	( )  a0: pointer to working bcd value|	( )  FP_SCR1: working copy of original bcd value|	( )  L_SCR1: copy of original exponent word||| First check the absolute value of the exponent to see if this| routine is necessary.  If so, then check the sign of the exponent| and do append (+) or strip (-) zeros accordingly.| This section handles a positive adjusted exponent.|__x_ap_st_z:	movel	a6@(L_SCR1),d1	| load expA for range test	cmpl	#27,d1		| test is with 27	jle 	__x_pwrten	| if abs(expA) <28, skip ap/st zeros	btst	#30,a0@		| check sign of exp	jne 	__x_ap_st_n	| if neg, go to neg side	clrl	d1		| zero count reg	movel	a0@,d4		| load lword 1 to d4	bfextu	d4{#28:#4},d0	| get M16 in d0	jne 	ap_p_fx		| if M16 is non-zero, go fix exp	addql	#1,d1		| inc zero count	moveql	#1,d5		| init lword counter	movel	a0@(d5:l:4),d4	| get lword 2 to d4	jne 	ap_p_cl		| if lw 2 is zero, skip it	addql	#8,d1		| and inc count by 8	addql	#1,d5		| inc lword counter	movel	a0@(d5:l:4),d4	| get lword 3 to d4ap_p_cl:	clrl	d3		| init offset reg	moveql	#7,d2		| init digit counterap_p_gd:	bfextu	d4{d3:#4},d0	| get digit	jne 	ap_p_fx		| if non-zero, go to fix exp	addql	#4,d3		| point to next digit	addql	#1,d1		| inc digit counter	dbf	d2,ap_p_gd	| get next digitap_p_fx:	movel	d1,d0		| copy counter to d2	movel	a6@(L_SCR1),d1	| get adjusted exp from memory	subl	d0,d1		| subtract count from exp	jge 	ap_p_fm		| if still pos, go to __x_pwrten	negl	d1		| now its neg|  get abs	movel	a0@,d4		| load lword 1 to d4	orl	#0x40000000,d4	|  and set SE in d4	orl	#0x40000000,a0@	|  and in memory|| Calculate the mantissa multiplier to compensate for the striping of| zeros from the mantissa.|ap_p_fm:	movel	#__x_PTENRN,a1	| get address of power-of-ten table	clrl	d3		| init table index	fmoves	FONE,fp1	| init fp1 to 1	moveql	#3,d2		| init d2 to count bits in counterap_p_el:	asrl	#1,d0		| shift lsb into carry	jcc 	ap_p_en		| if 1, mul fp1 by __x_pwrten factor	fmulx	a1@(d3),fp1	| mul by 10**(d3_bit_no)ap_p_en:	addl	#12,d3		| inc d3 to next rtable entry	tstl	d0		| check if d0 is zero	jne 	ap_p_el		| if not, get next bit	fmulx	fp1,fp0		| mul mantissa by 10**(no_bits_shifted)	jra 	__x_pwrten		| go calc __x_pwrten|| This section handles a negative adjusted exponent.|__x_ap_st_n:	clrl	d1		| clr counter	moveql	#2,d5		| set up d5 to point to lword 3	movel	a0@(d5:l:4),d4	| get lword 3	jne 	ap_n_cl		| if not zero, check digits	subl	#1,d5		| dec d5 to point to lword 2	addql	#8,d1		| inc counter by 8	movel	a0@(d5:l:4),d4	| get lword 2ap_n_cl:	movel	#28,d3		| point to last digit	moveql	#7,d2		| init digit counterap_n_gd:	bfextu	d4{d3:#4},d0	| get digit	jne 	ap_n_fx		| if non-zero, go to exp fix	subql	#4,d3		| point to previous digit	addql	#1,d1		| inc digit counter	dbf	d2,ap_n_gd	| get next digitap_n_fx:	movel	d1,d0		| copy counter to d0	movel	a6@(L_SCR1),d1	| get adjusted exp from memory	subl	d0,d1		| subtract count from exp	jgt 	ap_n_fm		| if still pos, go fix mantissa	negl	d1		| take abs of exp and clr SE	movel	a0@,d4		| load lword 1 to d4	andl	#0xbfffffff,d4	|  and clr SE in d4	andl	#0xbfffffff,a0@	|  and in memory|| Calculate the mantissa multiplier to compensate for the appending of| zeros to the mantissa.|ap_n_fm:	movel	#__x_PTENRN,a1	| get address of power-of-ten table	clrl	d3		| init table index	fmoves	FONE,fp1	| init fp1 to 1	moveql	#3,d2		| init d2 to count bits in counterap_n_el:	asrl	#1,d0		| shift lsb into carry	jcc 	ap_n_en		| if 1, mul fp1 by __x_pwrten factor	fmulx	a1@(d3),fp1	| mul by 10**(d3_bit_no)ap_n_en:	addl	#12,d3		| inc d3 to next rtable entry	tstl	d0		| check if d0 is zero	jne 	ap_n_el		| if not, get next bit	fdivx	fp1,fp0		| div mantissa by 10**(no_bits_shifted)||| Calculate power-of-ten factor from adjusted and shifted exponent.|| Register usage:||  __x_pwrten:|	(*)  d0: temp|	( )  d1: exponent|	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE|  temp|	(*)  d3: fpcr work copy|	( )  d4: first word of bcd|	(*)  a1: RTABLE pointer|  calc_p:|	(*)  d0: temp|	( )  d1: exponent|	(*)  d3: PWRTxx table index|	( )  a0: pointer to working copy of bcd|	(*)  a1: PWRTxx pointer|	(*) fp1: power-of-ten accumulator|| Pwrten calculates the exponent factor in the selected rounding mode| according to the following table:||	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode||	ANY	  ANY	RN	RN||	 +	   +	RP	RP|	 -	   +	RP	RM|	 +	   -	RP	RM|	 -	   -	RP	RP||	 +	   +	RM	RM|	 -	   +	RM	RP|	 +	   -	RM	RP|	 -	   -	RM	RM||	 +	   +	RZ	RM|	 -	   +	RZ	RM|	 +	   -	RZ	RP|	 -	   -	RZ	RP||__x_pwrten:	movel	a6@(USER_FPCR),d3 /* | get user's fpcr */	bfextu	d3{#26:#2},d2	| isolate rounding mode bits	movel	a0@,d4		| reload 1st bcd word to d4	asll	#2,d2		| format d2 to be	bfextu	d4{#0:#2},d0	|  {FPCR[6],fpcr[5],SM,SE}	addl	d0,d2		| in d2 as index into RTABLE	lea	RTABLE,a1	| load rtable base	moveb	a1@(d2),d0	| load new rounding bits from table	clrl	d3		| clear d3 to force no exc and extended	bfins	d0,d3{#26:#2}	| stuff new rounding bits in fpcr	fmovel	d3,fpcr		| write new fpcr	asrl	#1,d0		| write correct PTENxx table	jcc 	not_rp		| to a1	lea	__x_PTENRP,a1	| it is RP	jra 	calc_p		| go to init sectionnot_rp:	asrl	#1,d0		| keep checking	jcc 	not_rm	lea	__x_PTENRM,a1	| it is RM	jra 	calc_p		| go to init sectionnot_rm:	lea	__x_PTENRN,a1	| it is RNcalc_p:	movel	d1,d0		| copy exp to d0| use d0	jpl 	no_neg		| if exp is negative,	negl	d0		| invert it	orl	#0x40000000,a0@	| and set SE bitno_neg:	clrl	d3		| table index	fmoves	FONE,fp1	| init fp1 to 1e_loop:	asrl	#1,d0		| shift next bit into carry	jcc 	e_next		| if zero, skip the mul	fmulx	a1@(d3),fp1	| mul by 10**(d3_bit_no)e_next:	addl	#12,d3		| inc d3 to next rtable entry	tstl	d0		| check if d0 is zero	jne 	e_loop		| not zero, continue shifting|||  Check the sign of the adjusted exp and make the value in fp0 the|  same sign. If the exp was pos then multiply fp1*fp0||  else divide fp0/fp1.|| Register Usage:|  __x_norm:|	( )  a0: pointer to working bcd value|	(*) fp0: mantissa accumulator|	( ) fp1: scaling factor - 10**(abs(exp))|__x_norm:	btst	#30,a0@		| test the sign of the exponent	jeq 	mul		| if clear, go to multiplydiv:	fdivx	fp1,fp0		| exp is negative, so divide mant by exp	jra 	end_decmul:	fmulx	fp1,fp0		| exp is positive, so multiply by exp||| Clean up and return with result in fp0.|| If the final mul/div in __x_decbin incurred an inex exception,| it will be inex2, but will be reported as inex1 by __x_get_op.|end_dec:	fmovel	FPSR,d0			| get status register	bclr	#__x_inex2_bit+8,d0	| test for inex2 and clear it	fmovel	d0,FPSR			| return status reg w/o inex2	jeq 	no_exc			| skip this if no exc	orl	#inx1a_mask,a6@(USER_FPSR) | set inex1/ainexno_exc:	moveml	a7@+,d2-d5	rts|	end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -