📄 l_satanh.s
字号:
/* l_satanh.s - Motorola 68040 FP hyperbolic arc-tangent routines (LIB) *//* Copyright 1991-1993 Wind River Systems, Inc. */ .data .globl _copyright_wind_river .long _copyright_wind_river/*modification history--------------------01f,14jun95,tpr changed fbxx to fbxxl.01e,21jul93,kdl added .text (SPR #2372).01d,23aug92,jcf changed bxxx to jxx.01c,26may92,rrr the tree shuffle01b,09jan92,kdl added modification history; general cleanup.01a,15aug91,kdl original version, from Motorola FPSP v2.0.*//*DESCRIPTION satanhsa 3.3 12/19/90 The entry point __l_satanh computes the inverse hyperbolic tangent of an input argument| __l_satanhd does the same except for denormalized input. Input: Double-extended number X in location pointed to by address register a0. Output: The value arctanh(X) returned in floating-point register Fp0. Accuracy and Monotonicity: The returned result is within 3 ulps in 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the result is subsequently rounded to double precision. The result is provably monotonic in double precision. Speed: The program __l_satanh takes approximately 270 cycles. Algorithm: ATANH 1. If |X| >= 1, go to 3. 2. (|X| < 1) Calculate atanh(X) by sgn := sign(X) y := |X| z := 2y/(1-y) atanh(X) := sgn * (1/2) * logp1(z) Exit. 3. If |X| > 1, go to 5. 4. (|X| = 1) Generate infinity with an appropriate sign and divide-by-zero by sgn := sign(X) atan(X) := sgn / (+0). Exit. 5. (|X| > 1) Generate an invalid operation by 0 * infinity. Exit. Copyright (C) Motorola, Inc. 1990 All Rights Reserved THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA The copyright notice above does not evidence any actual or intended publication of such source code.__l_satanh IDNT 2,1 Motorola 040 Floating Point Software Package section 8NOMANUAL*/| xref __l_t_dz| xref __l_t_operr| xref __l_t_frcinx| xref __l_t_extdnrm| xref __l_slognp1 .text .globl __l_satanhd__l_satanhd:|--ATANH(X) = X FOR DENORMALIZED X jra __l_t_extdnrm .globl __l_satanh__l_satanh: movel a0@,d0 movew a0@(4),d0 andil #0x7FFFFFFF,d0 cmpil #0x3FFF8000,d0 jge ATANHBIG|--THIS IS THE USUAL CASE, |X| < 1|--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). fabsx a0@,fp0 |...Y = |X| fmovex fp0,fp1 fnegx fp1 |...-Y faddx fp0,fp0 |...2Y/* fadds &0x3F800000,fp1 */ .long 0xf23c44a2,0x3f800000 fdivx fp1,fp0 |...2Y/(1-Y) movel a0@,d0 andil #0x80000000,d0 oril #0x3F000000,d0 |...SIGN(X)*HALF movel d0,a7@- fmovemx fp0-fp0,a0@ |...overwrite input movel d1,a7@- clrl d1 bsrl __l_slognp1 |...lOG1P(Z) fmovel a7@+,fpcr fmuls a7@+,fp0 jra __l_t_frcinxATANHBIG: fabsx a0@,fp0 |...|X|/* fcmps &0x3F800000,fp0 */ .long 0xf23c4438,0x3f800000 fbgtl __l_t_operr jra __l_t_dz| end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -