📄 stochastic_sa.m
字号:
function [patterns, targets] = Stochastic_SA(train_patterns, train_targets, params, plot_on)
%Reduce the number of data points using the stochastic simulated annealing algorithm
%Inputs:
% train_patterns - Input patterns
% train_targets - Input targets
% params - [Number of output data points, cooling rate (Between 0 and 1)]
% plot_on - Plot stages of the algorithm
%
%Outputs
% patterns - New patterns
% targets - New targets
if (nargin < 5),
plot_on = 0;
end
%Parameters:
[Nmu, epsi] = process_params(params);
T = max(eig(cov(train_patterns',1)'))/2; %Initial temperature
Tmin = 0.01; %Stopping temperature
[d,L] = size(train_patterns);
label = zeros(1,L);
dist = zeros(Nmu,L);
iter = 0;
max_change = 1e-3;
%Initialize the mu's
mu = mean(train_patterns')';
%Init the inclusion matrix
inclusion_mat = rand(Nmu, L);
[m, i] = max(inclusion_mat);
inclusion_mat = zeros(Nmu,L);
for j = 1:L,
inclusion_mat(i(j),j) = 1;
end
if (Nmu >= 1),
while (T > Tmin),
iter = iter + 1;
index = randperm(L);
T = epsi * T;
for i = 1:L,
%Select a node (example) randomally. Poll all nodes once
%Calculate the energy in this configuration: Ea <- 1/2*sum(w_ij*s_i*s_j)
Ea = energy(train_patterns, inclusion_mat);
%Change the configuration and see what the energy is
config = inclusion_mat(:,index(i));
change = rand(Nmu,1);
[m, j] = max(~config.*change);
new_inclusion_mat = inclusion_mat;
new_inclusion_mat(:,index(i)) = 0;
new_inclusion_mat(j,index(i)) = 1;
Eb = energy(train_patterns, new_inclusion_mat);
if (Eb < Ea),
inclusion_mat = new_inclusion_mat;
else
if (exp(-(Eb-Ea)/T) > rand(1)),
inclusion_mat = new_inclusion_mat;
end
end
end
%Recalculate the mu's
mu = zeros(d, Nmu);
for i = 1:Nmu,
indices = find(inclusion_mat(i,:) == 1);
mu(:,i) = mean(train_patterns(:,indices)')';
end
%Plot centers during training
plot_process(mu, plot_on)
end
end
%Classify new centers
dist = zeros(Nmu,L);
for i = 1:Nmu,
dist(i,:) = sum((train_patterns - mu(:,i)*ones(1,L)).^2);
end
[m,label] = min(dist);
%Label the points
[m,label] = min(dist);
targets = zeros(1,Nmu);
Uc = unique(train_targets);
for i = 1:Nmu,
N = hist(train_targets(:,find(label == i)), Uc);
[m, max_l] = max(N);
targets(i) = Uc(max_l);
end
patterns = mu;
function E = energy(patterns, inclusion_matrix)
%Calculate the energy value given the patterns and the inclusion matrix
%The energy function tries to minimize the in-class variance
[N,M] = size(inclusion_matrix);
e = zeros(1,N+1);
for i = 1:N,
indices = find(inclusion_matrix(i,:) == 1);
mu = mean(patterns(:,indices)')';
e(i) = sum(sum((patterns(:,indices) - mu*ones(1,length(indices))).^2));
end
E = sum(e);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -