📄 perceptron_bvi.m
字号:
function [test_targets, a] = Perceptron_BVI(train_patterns, train_targets, test_patterns, params)
% Classify using the batch variable increment Perceptron algorithm
% Inputs:
% train_patterns - Train patterns
% train_targets - Train targets
% test_patterns - Test patterns
% param - [Num iter, Convergence rate]
%
% Outputs
% test_targets - Predicted targets
% a - Perceptron weights
%
% NOTE: Works for only two classes.
[c, n] = size(train_patterns);
[Max_iter, eta] = process_params(params);
train_patterns = [train_patterns ; ones(1,n)];
train_zero = find(train_targets == 0);
%Preprocessing
y = train_patterns;
y(:,train_zero) = -y(:,train_zero);
a = sum(y')';
%Initial weights
iter = 0;
Yk = [1];
while (~isempty(Yk) & (iter < Max_iter))
iter = iter + 1;
%If y_j is misclassified then append y_j to Yk
Yk = [];
for k = 1:n,
if (a'*train_patterns(:,k).*(2*train_targets(:,k)-1) < 0),
Yk = [Yk k];
end
end
% a <- a + eta*sum(Yk)
a = a + eta * sum(y(:,Yk)')';
end
if (iter == Max_iter),
disp(['Maximum iteration (' num2str(Max_iter) ') reached']);
end
%Classify test patterns
test_targets = a'*[test_patterns; ones(1, size(test_patterns,2))] > 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -