📄 arclzw.c
字号:
/* * $Header: arclzw.c,v 1.4 88/06/01 16:27:59 hyc Locked $ *//* * ARC - Archive utility - ARCLZW * * Version 2.03, created on 10/24/86 at 11:46:22 * * (C) COPYRIGHT 1985,86 by System Enhancement Associates; ALL RIGHTS RESERVED * * By: Thom Henderson * * Description: This file contains the routines used to implement Lempel-Zev * data compression, which calls for building a coding table on the fly. * This form of compression is especially good for encoding files which * contain repeated strings, and can often give dramatic improvements over * traditional Huffman SQueezing. * * Language: Computer Innovations Optimizing C86 * * Programming notes: In this section I am drawing heavily on the COMPRESS * program from UNIX. The basic method is taken from "A Technique for High * Performance Data Compression", Terry A. Welch, IEEE Computer Vol 17, No 6 * (June 1984), pp 8-19. Also see "Knuth's Fundamental Algorithms", Donald * Knuth, Vol 3, Section 6.4. * * As best as I can tell, this method works by tracing down a hash table of code * strings where each entry has the property: * * if <string> <char> is in the table then <string> is in the table. */#include <stdio.h>#include "arc.h"void putc_pak(), abort(), putc_ncr();int getc_unp();#if MSDOSchar *setmem();#elsechar *memset();#endifstatic void putcode();/* definitions for older style crunching */#define FALSE 0#define TRUE !FALSE#define TABSIZE 4096#define NO_PRED 0xFFFF#define EMPTY 0xFFFF#define NOT_FND 0xFFFFstatic unsigned short inbuf; /* partial input code storage */static int sp; /* current stack pointer */struct entry { /* string table entry format */ char used; /* true when this entry is in use */ unsigned char follower; /* char following string */ unsigned short next; /* ptr to next in collision list */ unsigned short predecessor; /* code for preceeding string */}; /* string_tab[TABSIZE]; /* the code string table *//* definitions for the new dynamic Lempel-Zev crunching */#define BITS 12 /* maximum bits per code */#define HSIZE 5003 /* 80% occupancy */#define INIT_BITS 9 /* initial number of bits/code */static int n_bits; /* number of bits/code */static int maxcode; /* maximum code, given n_bits */#define MAXCODE(n) ((1<<(n)) - 1) /* maximum code calculation */static int maxcodemax = 1 << BITS; /* largest possible code (+1) */static char buf[BITS]; /* input/output buffer */static unsigned char lmask[9] = /* left side masks */{ 0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};static unsigned char rmask[9] = /* right side masks */{ 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};static int offset; /* byte offset for code output */static long in_count; /* length of input */static long bytes_out; /* length of compressed output */static long bytes_ref; /* output quality reference */static long bytes_last; /* output size at last checkpoint */static unsigned short ent;/* * To save much memory (which we badly need at this point), we overlay the * table used by the previous version of Lempel-Zev with those used by the * new version. Since no two of these routines will be used together, we can * safely do this. */extern long htab[HSIZE]; /* hash code table (crunch) */extern unsigned short codetab[HSIZE]; /* string code table (crunch) */static struct entry *string_tab=(struct entry *)htab; /* old crunch string table */static unsigned short *prefix=codetab; /* prefix code table (uncrunch) */static unsigned char *suffix=(unsigned char *)htab; /* suffix table (uncrunch) */static int free_ent; /* first unused entry */static int firstcmp; /* true at start of compression */extern unsigned char stack[HSIZE]; /* local push/pop stack *//* * block compression parameters -- after all codes are used up, and * compression rate changes, start over. */static int clear_flg;#define CHECK_GAP 2048 /* ratio check interval */static long checkpoint;void upd_tab();/* * the next two codes should not be changed lightly, as they must not lie * within the contiguous general code space. */#define FIRST 257 /* first free entry */#define CLEAR 256 /* table clear output code *//* * The cl_block() routine is called at each checkpoint to determine if * compression would likely improve by resetting the code table. The method * chosen to determine this is based on empirical observation that, in * general, every 2k of input data should compress at least as well as the * first 2k of input. */static voidcl_block(t) /* table clear for block compress */ FILE *t; /* our output file */{ checkpoint = in_count + CHECK_GAP; if (bytes_ref) { if (bytes_out - bytes_last > bytes_ref) { setmem(htab, HSIZE * sizeof(long), 0xff); free_ent = FIRST; clear_flg = 1; putcode(CLEAR, t); bytes_ref = 0; } } else bytes_ref = bytes_out - bytes_last; bytes_last = bytes_out; /* remember where we were */}/***************************************************************** * * Output a given code. * Inputs: * code: A n_bits-bit integer. If == -1, then EOF. This assumes * that n_bits =< (LONG)wordsize - 1. * Outputs: * Outputs code to the file. * Assumptions: * Chars are 8 bits long. * Algorithm: * Maintain a BITS character long buffer (so that 8 codes will * fit in it exactly). When the buffer fills up empty it and start over. */static voidputcode(code, t) /* output a code */ int code; /* code to output */ FILE *t; /* where to put it */{ int r_off = offset; /* right offset */ int bits = n_bits; /* bits to go */ char *bp = buf; /* buffer pointer */ int n; /* index */ register int ztmp; if (code >= 0) { /* if a real code *//* Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* * Since code is always >= 8 bits, only need to mask the * first hunk on the left. */ ztmp = (code << r_off) & lmask[r_off]; *bp = (*bp & rmask[r_off]) | ztmp; bp++; bits -= (8 - r_off); code >>= (8 - r_off); /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if (bits >= 8) { *bp++ = code; code >>= 8; bits -= 8; } /* Last bits. */ if (bits) *bp = code; offset += n_bits; if (offset == (n_bits << 3)) { bp = buf; bits = n_bits; bytes_out += bits; do putc_pak(*bp++, t); while (--bits); offset = 0; } /* * If the next entry is going to be too big for the code * size, then increase it, if possible. */ if (free_ent > maxcode || clear_flg > 0) { /* * Write the whole buffer, because the input side * won't discover the size increase until after * it has read it. */ if (offset > 0) { bp = buf; /* reset pointer for writing */ bytes_out += n = n_bits; while (n--) putc_pak(*bp++, t); } offset = 0; if (clear_flg) { /* reset if clearing */ maxcode = MAXCODE(n_bits = INIT_BITS); clear_flg = 0; } else {/* else use more bits */ n_bits++; if (n_bits == BITS) maxcode = maxcodemax; else maxcode = MAXCODE(n_bits); } } } else { /* dump the buffer on EOF */ bytes_out += n = (offset + 7) / 8; if (offset > 0) while (n--) putc_pak(*bp++, t); offset = 0; }}/***************************************************************** * * Read one code from the standard input. If EOF, return -1. * Inputs: * cmpin * Outputs: * code or -1 is returned. */static intgetcode(f) /* get a code */ FILE *f; /* file to get from */{ int code; static int offset = 0, size = 0; int r_off, bits; unsigned char *bp = (unsigned char *) buf; if (clear_flg > 0 || offset >= size || free_ent > maxcode) { /* * If the next entry will be too big for the current code * size, then we must increase the size. This implies * reading a new buffer full, too. */ if (free_ent > maxcode) { n_bits++; if (n_bits == BITS) maxcode = maxcodemax; /* won't get any bigger * now */ else maxcode = MAXCODE(n_bits); } if (clear_flg > 0) { maxcode = MAXCODE(n_bits = INIT_BITS); clear_flg = 0; } for (size = 0; size < n_bits; size++) { if ((code = getc_unp(f)) == EOF) break; else buf[size] = (char) code; } if (size <= 0) return -1; /* end of file */ offset = 0; /* Round size down to integral number of codes */ size = (size << 3) - (n_bits - 1); } r_off = offset; bits = n_bits; /* * Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* Get first part (low order bits) */ code = (*bp++ >> r_off); bits -= 8 - r_off; r_off = 8 - r_off; /* now, offset into code word */ /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if (bits >= 8) { code |= *bp++ << r_off; r_off += 8; bits -= 8; } /* high order bits. */ code |= (*bp & rmask[bits]) << r_off; offset += n_bits; return code & MAXCODE(BITS);}/* * compress a file * * Algorithm: use open addressing double hashing (no chaining) on the prefix * code / next character combination. We do a variant of Knuth's algorithm D * (vol. 3, sec. 6.4) along with G. Knott's relatively-prime secondary probe. * Here, the modular division first probe is gives way to a faster * exclusive-or manipulation. Also do block compression with an adaptive * reset, where the code table is cleared when the compression ratio * decreases, but after the table fills. The variable-length output codes * are re-sized at this point, and a special CLEAR code is generated for the * decompressor. */voidinit_cm(t) /* initialize for compression */ FILE *t; /* where compressed file goes */{ offset = 0; bytes_out = bytes_last = 1; bytes_ref = 0; clear_flg = 0; in_count = 1; checkpoint = CHECK_GAP; maxcode = MAXCODE(n_bits = INIT_BITS); free_ent = FIRST; setmem(htab, HSIZE * sizeof(long), 0xff); n_bits = INIT_BITS; /* set starting code size */ putc_pak(BITS, t); /* note our max code length */ firstcmp = 1; /* next byte will be first */}voidputc_cm(c, t) /* compress a character */ unsigned char c; /* character to compress */ FILE *t; /* where to put it */{ static long fcode; static int hshift; int i; int disp; if (firstcmp) { /* special case for first byte */ ent = c; /* remember first byte */ hshift = 0; for (fcode = (long) HSIZE; fcode < 65536L; fcode *= 2L) hshift++; hshift = 8 - hshift; /* set hash code range bound */ firstcmp = 0; /* no longer first */ return; } in_count++; fcode = (long) (((long) c << BITS) + ent); i = (c << hshift) ^ ent;/* xor hashing */ if (htab[i] == fcode) { ent = codetab[i]; return; } else if (htab[i] < 0) /* empty slot */ goto nomatch; disp = HSIZE - i; /* secondary hash (after G.Knott) */ if (i == 0) disp = 1;probe:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -