📄 ga.txt
字号:
struct genotype newpopulation[POPSIZE+1];
void initialize(void);
double randval(double,double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *,double *);
void mutate(void);
void report(void);
void initialize(void)
{FILE *infile;
int i,j;
double lbound,ubound;
if((infile=fopen("gadata.txt","r"))==NULL)
{fprintf(galog,"\nCannot open input file\n");
exit(1);
}
for(i=0;i<NVARS;i++)
{fscanf(infile,"%lf",&lbound);
fscanf(infile,"%lf",&ubound);
for(j=0;j<POPSIZE;j++)
{population[j].fitness=0;
population[j].rfitness=0;
population[j].cfitness=0;
population[j].lower[i]=lbound;
population[j].upper[i]=ubound;
population[j].gene[i]=randval(
population[j].lower[i],
population[j].upper[i]);
}
}
fclose(infile);
}
double randval(double low,double high)
{double val;
val=((double)(rand()%1000)/1000.0)*(high-low)+low;
return (val);
}
void evaluate(void)
{int mem;
int i;
double x[NVARS+1];
for(mem=0;mem<POPSIZE;mem++)
{for(i=0;i<NVARS;i++)
x[i+1]=population[mem].gene[i];
population[mem].fitness=3/(exp(-x[1]+x[2]*x[2])+exp(-exp(-x[1]))
+exp(2*x[1]-x[2]));
}
}
void keep_the_best()
{int mem;
int i;
cur_best=0;
for(mem=0;mem<POPSIZE;mem++)
{if(population[mem].fitness>
population[POPSIZE].fitness)
{cur_best=mem;
population[POPSIZE].fitness=population[mem].fitness;
}
}
for(i=0;i<NVARS;i++)
population[POPSIZE].gene[i]=population[cur_best].gene[i];
}
void elitist()
{int i;
double best,worst;
int best_mem,worst_mem;
best=population[0].fitness;
worst=population[0].fitness;
for(i=0;i<POPSIZE;i++)
{if(population[i].fitness>population[i+1].fitness)
{if(population[i].fitness>=best)
{best=population[i].fitness;
best_mem=i;
}
if(population[i+1].fitness<=worst)
{worst=population[i+1].fitness;
worst_mem=i+1;
}
}
else
{if(population[i].fitness<=worst)
{worst=population[i].fitness;
worst_mem=i;
}
if(population[i+1].fitness>=best)
{best=population[i+1].fitness;
best_mem=i+1;
}
}
}
if(best>=population[POPSIZE].fitness)
{for(i=0;i<NVARS;i++)
population[POPSIZE].gene[i]=population[best_mem].gene[i];
population[POPSIZE].fitness=population[best_mem].fitness;
}
else
{for(i=0;i<NVARS;i++)
population[worst_mem].gene[i]=population[POPSIZE].gene[i];
population[worst_mem].fitness=population[POPSIZE].fitness;
}
}
void select(void)
{int mem,i,j,k;
double sum=0;
double p;
for(mem=0;mem<POPSIZE;mem++)
{sum+=population[mem].fitness;
}
for(mem=0;mem<POPSIZE;mem++)
{population[mem].rfitness=population[mem].fitness/sum;
}
population[0].cfitness=population[0].rfitness;
for(mem=1;mem<POPSIZE;mem++)
{population[mem].cfitness=population[mem-1].cfitness+
population[mem-1].rfitness;
}
for(i=0;i<POPSIZE;i++)
{p=rand()%1000/1000.0;
if(p<population[0].cfitness)
newpopulation[i]=population[0];
else
{for(j=0;j<POPSIZE;j++)
if(p>=population[j].cfitness&&
population[j+1].cfitness)
newpopulation[i]=population[j+1];
}
}
for(i=0;i<POPSIZE;i++)
population[i]=newpopulation[i];
}
void crossover(void)
{int i,mem,one;
int first=0;
double x;
for(mem=0;mem<POPSIZE;++mem);
{x=rand()%1000/1000.0;
if(x<PXOVER)
{++first;
if(first%2==0)
Xover(one,mem);
else
one=mem;
}
}
}
void Xover(int one,int two)
{int i;
int point;
if(NVARS>1)
{if(NVARS==2)
point=1;
else
point=(rand()%(NVARS-1))+1;
for(i=0;i<point;i++)
swap(&population[one].gene[i],&population[two].gene[i]);
}
}
void swap(double *x,double *y)
{double temp;
temp=*x;
*x=*y;
*y=temp;
}
void mutate(void)
{int i,j;
double lbound,hbound;
double x;
for(i=0;i<POPSIZE;i++)
for(j=0;j<NVARS;j++)
{x=rand()%1000/1000.0;
if(x<PMUTATION)
{lbound=population[i].lower[j];
hbound=population[i].upper[j];
population[i].gene[j]=randval(lbound,hbound);
}
}
}
void report(void)
{int i;
double best_val;
double avg;
double stddev;
double square_sum;
double sum_square;
double sum;
sum=0.0;
sum_square=0.0;
for(i=0;i<POPSIZE;i++)
{sum+=population[i].fitness;
sum_square+=population[i].fitness*population[i].fitness;
}
avg=sum/(double)POPSIZE;
square_sum=avg*avg*(double)POPSIZE;
stddev=sqrt((sum_square-square_sum)/(POPSIZE-1));
best_val=population[POPSIZE].fitness;
fprintf(galog,"\n%5d,%6.3f,%6.3f,%6.3f\n\n",generation,
best_val,avg,stddev);
}
void main(void)
{int i;
if((galog=fopen("galog.txt","w"))==NULL)
{exit(1);
}
generation=0;
fprintf(galog,"\ngeneration best average standard\n");
fprintf(galog,"number value fitnenss deviation\n");
initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)
{generation++;
printf("%d\n",generation);
select();
crossover();
mutate();
s=population[POPSIZE].fitness;
report();
evaluate();
elitist();
}
fprintf(galog,"\n\nSimelation completed\n");
fprintf(galog,"\nBest member:\n");
for(i=0;i<NVARS;i++)
{fprintf(galog,"\n var(%d)=%3.3f",i,population[POPSIZE].gene[i]);
}
fprintf(galog,"\n\n Best fitness=%3.3f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -