⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arp_tables.c

📁 linux 内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Packet matching code for ARP packets. * * Based heavily, if not almost entirely, upon ip_tables.c framework. * * Some ARP specific bits are: * * Copyright (C) 2002 David S. Miller (davem@redhat.com) * */#include <linux/kernel.h>#include <linux/skbuff.h>#include <linux/netdevice.h>#include <linux/capability.h>#include <linux/if_arp.h>#include <linux/kmod.h>#include <linux/vmalloc.h>#include <linux/proc_fs.h>#include <linux/module.h>#include <linux/init.h>#include <asm/uaccess.h>#include <linux/mutex.h>#include <linux/netfilter/x_tables.h>#include <linux/netfilter_arp/arp_tables.h>MODULE_LICENSE("GPL");MODULE_AUTHOR("David S. Miller <davem@redhat.com>");MODULE_DESCRIPTION("arptables core");/*#define DEBUG_ARP_TABLES*//*#define DEBUG_ARP_TABLES_USER*/#ifdef DEBUG_ARP_TABLES#define dprintf(format, args...)  printk(format , ## args)#else#define dprintf(format, args...)#endif#ifdef DEBUG_ARP_TABLES_USER#define duprintf(format, args...) printk(format , ## args)#else#define duprintf(format, args...)#endif#ifdef CONFIG_NETFILTER_DEBUG#define ARP_NF_ASSERT(x)					\do {								\	if (!(x))						\		printk("ARP_NF_ASSERT: %s:%s:%u\n",		\		       __FUNCTION__, __FILE__, __LINE__);	\} while(0)#else#define ARP_NF_ASSERT(x)#endifstatic inline int arp_devaddr_compare(const struct arpt_devaddr_info *ap,				      char *hdr_addr, int len){	int i, ret;	if (len > ARPT_DEV_ADDR_LEN_MAX)		len = ARPT_DEV_ADDR_LEN_MAX;	ret = 0;	for (i = 0; i < len; i++)		ret |= (hdr_addr[i] ^ ap->addr[i]) & ap->mask[i];	return (ret != 0);}/* Returns whether packet matches rule or not. */static inline int arp_packet_match(const struct arphdr *arphdr,				   struct net_device *dev,				   const char *indev,				   const char *outdev,				   const struct arpt_arp *arpinfo){	char *arpptr = (char *)(arphdr + 1);	char *src_devaddr, *tgt_devaddr;	__be32 src_ipaddr, tgt_ipaddr;	int i, ret;#define FWINV(bool,invflg) ((bool) ^ !!(arpinfo->invflags & invflg))	if (FWINV((arphdr->ar_op & arpinfo->arpop_mask) != arpinfo->arpop,		  ARPT_INV_ARPOP)) {		dprintf("ARP operation field mismatch.\n");		dprintf("ar_op: %04x info->arpop: %04x info->arpop_mask: %04x\n",			arphdr->ar_op, arpinfo->arpop, arpinfo->arpop_mask);		return 0;	}	if (FWINV((arphdr->ar_hrd & arpinfo->arhrd_mask) != arpinfo->arhrd,		  ARPT_INV_ARPHRD)) {		dprintf("ARP hardware address format mismatch.\n");		dprintf("ar_hrd: %04x info->arhrd: %04x info->arhrd_mask: %04x\n",			arphdr->ar_hrd, arpinfo->arhrd, arpinfo->arhrd_mask);		return 0;	}	if (FWINV((arphdr->ar_pro & arpinfo->arpro_mask) != arpinfo->arpro,		  ARPT_INV_ARPPRO)) {		dprintf("ARP protocol address format mismatch.\n");		dprintf("ar_pro: %04x info->arpro: %04x info->arpro_mask: %04x\n",			arphdr->ar_pro, arpinfo->arpro, arpinfo->arpro_mask);		return 0;	}	if (FWINV((arphdr->ar_hln & arpinfo->arhln_mask) != arpinfo->arhln,		  ARPT_INV_ARPHLN)) {		dprintf("ARP hardware address length mismatch.\n");		dprintf("ar_hln: %02x info->arhln: %02x info->arhln_mask: %02x\n",			arphdr->ar_hln, arpinfo->arhln, arpinfo->arhln_mask);		return 0;	}	src_devaddr = arpptr;	arpptr += dev->addr_len;	memcpy(&src_ipaddr, arpptr, sizeof(u32));	arpptr += sizeof(u32);	tgt_devaddr = arpptr;	arpptr += dev->addr_len;	memcpy(&tgt_ipaddr, arpptr, sizeof(u32));	if (FWINV(arp_devaddr_compare(&arpinfo->src_devaddr, src_devaddr, dev->addr_len),		  ARPT_INV_SRCDEVADDR) ||	    FWINV(arp_devaddr_compare(&arpinfo->tgt_devaddr, tgt_devaddr, dev->addr_len),		  ARPT_INV_TGTDEVADDR)) {		dprintf("Source or target device address mismatch.\n");		return 0;	}	if (FWINV((src_ipaddr & arpinfo->smsk.s_addr) != arpinfo->src.s_addr,		  ARPT_INV_SRCIP) ||	    FWINV(((tgt_ipaddr & arpinfo->tmsk.s_addr) != arpinfo->tgt.s_addr),		  ARPT_INV_TGTIP)) {		dprintf("Source or target IP address mismatch.\n");		dprintf("SRC: %u.%u.%u.%u. Mask: %u.%u.%u.%u. Target: %u.%u.%u.%u.%s\n",			NIPQUAD(src_ipaddr),			NIPQUAD(arpinfo->smsk.s_addr),			NIPQUAD(arpinfo->src.s_addr),			arpinfo->invflags & ARPT_INV_SRCIP ? " (INV)" : "");		dprintf("TGT: %u.%u.%u.%u Mask: %u.%u.%u.%u Target: %u.%u.%u.%u.%s\n",			NIPQUAD(tgt_ipaddr),			NIPQUAD(arpinfo->tmsk.s_addr),			NIPQUAD(arpinfo->tgt.s_addr),			arpinfo->invflags & ARPT_INV_TGTIP ? " (INV)" : "");		return 0;	}	/* Look for ifname matches.  */	for (i = 0, ret = 0; i < IFNAMSIZ; i++) {		ret |= (indev[i] ^ arpinfo->iniface[i])			& arpinfo->iniface_mask[i];	}	if (FWINV(ret != 0, ARPT_INV_VIA_IN)) {		dprintf("VIA in mismatch (%s vs %s).%s\n",			indev, arpinfo->iniface,			arpinfo->invflags&ARPT_INV_VIA_IN ?" (INV)":"");		return 0;	}	for (i = 0, ret = 0; i < IFNAMSIZ; i++) {		ret |= (outdev[i] ^ arpinfo->outiface[i])			& arpinfo->outiface_mask[i];	}	if (FWINV(ret != 0, ARPT_INV_VIA_OUT)) {		dprintf("VIA out mismatch (%s vs %s).%s\n",			outdev, arpinfo->outiface,			arpinfo->invflags&ARPT_INV_VIA_OUT ?" (INV)":"");		return 0;	}	return 1;}static inline int arp_checkentry(const struct arpt_arp *arp){	if (arp->flags & ~ARPT_F_MASK) {		duprintf("Unknown flag bits set: %08X\n",			 arp->flags & ~ARPT_F_MASK);		return 0;	}	if (arp->invflags & ~ARPT_INV_MASK) {		duprintf("Unknown invflag bits set: %08X\n",			 arp->invflags & ~ARPT_INV_MASK);		return 0;	}	return 1;}static unsigned int arpt_error(struct sk_buff *skb,			       const struct net_device *in,			       const struct net_device *out,			       unsigned int hooknum,			       const struct xt_target *target,			       const void *targinfo){	if (net_ratelimit())		printk("arp_tables: error: '%s'\n", (char *)targinfo);	return NF_DROP;}static inline struct arpt_entry *get_entry(void *base, unsigned int offset){	return (struct arpt_entry *)(base + offset);}unsigned int arpt_do_table(struct sk_buff *skb,			   unsigned int hook,			   const struct net_device *in,			   const struct net_device *out,			   struct arpt_table *table){	static const char nulldevname[IFNAMSIZ];	unsigned int verdict = NF_DROP;	struct arphdr *arp;	bool hotdrop = false;	struct arpt_entry *e, *back;	const char *indev, *outdev;	void *table_base;	struct xt_table_info *private;	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +				 (2 * skb->dev->addr_len) +				 (2 * sizeof(u32)))))		return NF_DROP;	indev = in ? in->name : nulldevname;	outdev = out ? out->name : nulldevname;	read_lock_bh(&table->lock);	private = table->private;	table_base = (void *)private->entries[smp_processor_id()];	e = get_entry(table_base, private->hook_entry[hook]);	back = get_entry(table_base, private->underflow[hook]);	arp = arp_hdr(skb);	do {		if (arp_packet_match(arp, skb->dev, indev, outdev, &e->arp)) {			struct arpt_entry_target *t;			int hdr_len;			hdr_len = sizeof(*arp) + (2 * sizeof(struct in_addr)) +				(2 * skb->dev->addr_len);			ADD_COUNTER(e->counters, hdr_len, 1);			t = arpt_get_target(e);			/* Standard target? */			if (!t->u.kernel.target->target) {				int v;				v = ((struct arpt_standard_target *)t)->verdict;				if (v < 0) {					/* Pop from stack? */					if (v != ARPT_RETURN) {						verdict = (unsigned)(-v) - 1;						break;					}					e = back;					back = get_entry(table_base,							 back->comefrom);					continue;				}				if (table_base + v				    != (void *)e + e->next_offset) {					/* Save old back ptr in next entry */					struct arpt_entry *next						= (void *)e + e->next_offset;					next->comefrom =						(void *)back - table_base;					/* set back pointer to next entry */					back = next;				}				e = get_entry(table_base, v);			} else {				/* Targets which reenter must return				 * abs. verdicts				 */				verdict = t->u.kernel.target->target(skb,								     in, out,								     hook,								     t->u.kernel.target,								     t->data);				/* Target might have changed stuff. */				arp = arp_hdr(skb);				if (verdict == ARPT_CONTINUE)					e = (void *)e + e->next_offset;				else					/* Verdict */					break;			}		} else {			e = (void *)e + e->next_offset;		}	} while (!hotdrop);	read_unlock_bh(&table->lock);	if (hotdrop)		return NF_DROP;	else		return verdict;}/* All zeroes == unconditional rule. */static inline int unconditional(const struct arpt_arp *arp){	unsigned int i;	for (i = 0; i < sizeof(*arp)/sizeof(__u32); i++)		if (((__u32 *)arp)[i])			return 0;	return 1;}/* Figures out from what hook each rule can be called: returns 0 if * there are loops.  Puts hook bitmask in comefrom. */static int mark_source_chains(struct xt_table_info *newinfo,			      unsigned int valid_hooks, void *entry0){	unsigned int hook;	/* No recursion; use packet counter to save back ptrs (reset	 * to 0 as we leave), and comefrom to save source hook bitmask.	 */	for (hook = 0; hook < NF_ARP_NUMHOOKS; hook++) {		unsigned int pos = newinfo->hook_entry[hook];		struct arpt_entry *e			= (struct arpt_entry *)(entry0 + pos);		if (!(valid_hooks & (1 << hook)))			continue;		/* Set initial back pointer. */		e->counters.pcnt = pos;		for (;;) {			struct arpt_standard_target *t				= (void *)arpt_get_target(e);			int visited = e->comefrom & (1 << hook);			if (e->comefrom & (1 << NF_ARP_NUMHOOKS)) {				printk("arptables: loop hook %u pos %u %08X.\n",				       hook, pos, e->comefrom);				return 0;			}			e->comefrom				|= ((1 << hook) | (1 << NF_ARP_NUMHOOKS));			/* Unconditional return/END. */			if ((e->target_offset == sizeof(struct arpt_entry)			    && (strcmp(t->target.u.user.name,				       ARPT_STANDARD_TARGET) == 0)			    && t->verdict < 0			    && unconditional(&e->arp)) || visited) {				unsigned int oldpos, size;				if (t->verdict < -NF_MAX_VERDICT - 1) {					duprintf("mark_source_chains: bad "						"negative verdict (%i)\n",								t->verdict);					return 0;				}				/* Return: backtrack through the last				 * big jump.				 */				do {					e->comefrom ^= (1<<NF_ARP_NUMHOOKS);					oldpos = pos;					pos = e->counters.pcnt;					e->counters.pcnt = 0;					/* We're at the start. */					if (pos == oldpos)						goto next;					e = (struct arpt_entry *)						(entry0 + pos);				} while (oldpos == pos + e->next_offset);				/* Move along one */				size = e->next_offset;				e = (struct arpt_entry *)					(entry0 + pos + size);				e->counters.pcnt = pos;				pos += size;			} else {				int newpos = t->verdict;				if (strcmp(t->target.u.user.name,					   ARPT_STANDARD_TARGET) == 0				    && newpos >= 0) {					if (newpos > newinfo->size -						sizeof(struct arpt_entry)) {						duprintf("mark_source_chains: "							"bad verdict (%i)\n",								newpos);						return 0;					}					/* This a jump; chase it. */					duprintf("Jump rule %u -> %u\n",						 pos, newpos);				} else {					/* ... this is a fallthru */					newpos = pos + e->next_offset;				}				e = (struct arpt_entry *)					(entry0 + newpos);				e->counters.pcnt = pos;				pos = newpos;			}		}		next:		duprintf("Finished chain %u\n", hook);	}	return 1;}static inline int standard_check(const struct arpt_entry_target *t,				 unsigned int max_offset){	/* Check standard info. */	if (t->u.target_size	    != ARPT_ALIGN(sizeof(struct arpt_standard_target))) {		duprintf("arpt_standard_check: target size %u != %Zu\n",			 t->u.target_size,			 ARPT_ALIGN(sizeof(struct arpt_standard_target)));		return 0;	}	return 1;}static struct arpt_target arpt_standard_target;static inline int check_entry(struct arpt_entry *e, const char *name, unsigned int size,			      unsigned int *i){	struct arpt_entry_target *t;	struct arpt_target *target;	int ret;	if (!arp_checkentry(&e->arp)) {		duprintf("arp_tables: arp check failed %p %s.\n", e, name);		return -EINVAL;	}	if (e->target_offset + sizeof(struct arpt_entry_target) > e->next_offset)		return -EINVAL;	t = arpt_get_target(e);	if (e->target_offset + t->u.target_size > e->next_offset)		return -EINVAL;	target = try_then_request_module(xt_find_target(NF_ARP, t->u.user.name,							t->u.user.revision),					 "arpt_%s", t->u.user.name);	if (IS_ERR(target) || !target) {		duprintf("check_entry: `%s' not found\n", t->u.user.name);		ret = target ? PTR_ERR(target) : -ENOENT;		goto out;	}	t->u.kernel.target = target;	ret = xt_check_target(target, NF_ARP, t->u.target_size - sizeof(*t),			      name, e->comefrom, 0, 0);	if (ret)		goto err;	if (t->u.kernel.target == &arpt_standard_target) {		if (!standard_check(t, size)) {			ret = -EINVAL;			goto err;		}	} else if (t->u.kernel.target->checkentry		   && !t->u.kernel.target->checkentry(name, e, target, t->data,						      e->comefrom)) {		duprintf("arp_tables: check failed for `%s'.\n",			 t->u.kernel.target->name);		ret = -EINVAL;		goto err;	}	(*i)++;	return 0;err:	module_put(t->u.kernel.target->me);out:	return ret;}static inline int check_entry_size_and_hooks(struct arpt_entry *e,					     struct xt_table_info *newinfo,					     unsigned char *base,					     unsigned char *limit,					     const unsigned int *hook_entries,					     const unsigned int *underflows,					     unsigned int *i){	unsigned int h;	if ((unsigned long)e % __alignof__(struct arpt_entry) != 0	    || (unsigned char *)e + sizeof(struct arpt_entry) >= limit) {		duprintf("Bad offset %p\n", e);		return -EINVAL;	}	if (e->next_offset	    < sizeof(struct arpt_entry) + sizeof(struct arpt_entry_target)) {		duprintf("checking: element %p size %u\n",			 e, e->next_offset);		return -EINVAL;	}	/* Check hooks & underflows */	for (h = 0; h < NF_ARP_NUMHOOKS; h++) {		if ((unsigned char *)e - base == hook_entries[h])			newinfo->hook_entry[h] = hook_entries[h];		if ((unsigned char *)e - base == underflows[h])			newinfo->underflow[h] = underflows[h];	}	/* FIXME: underflows must be unconditional, standard verdicts	   < 0 (not ARPT_RETURN). --RR */	/* Clear counters and comefrom */	e->counters = ((struct xt_counters) { 0, 0 });	e->comefrom = 0;	(*i)++;	return 0;}static inline int cleanup_entry(struct arpt_entry *e, unsigned int *i){	struct arpt_entry_target *t;	if (i && (*i)-- == 0)		return 1;	t = arpt_get_target(e);	if (t->u.kernel.target->destroy)		t->u.kernel.target->destroy(t->u.kernel.target, t->data);	module_put(t->u.kernel.target->me);	return 0;}/* Checks and translates the user-supplied table segment (held in * newinfo). */static int translate_table(const char *name,			   unsigned int valid_hooks,			   struct xt_table_info *newinfo,			   void *entry0,			   unsigned int size,			   unsigned int number,			   const unsigned int *hook_entries,			   const unsigned int *underflows){	unsigned int i;	int ret;	newinfo->size = size;	newinfo->number = number;	/* Init all hooks to impossible value. */	for (i = 0; i < NF_ARP_NUMHOOKS; i++) {		newinfo->hook_entry[i] = 0xFFFFFFFF;		newinfo->underflow[i] = 0xFFFFFFFF;	}	duprintf("translate_table: size %u\n", newinfo->size);	i = 0;	/* Walk through entries, checking offsets. */	ret = ARPT_ENTRY_ITERATE(entry0, newinfo->size,				 check_entry_size_and_hooks,				 newinfo,				 entry0,				 entry0 + size,				 hook_entries, underflows, &i);	duprintf("translate_table: ARPT_ENTRY_ITERATE gives %d\n", ret);	if (ret != 0)		return ret;	if (i != number) {		duprintf("translate_table: %u not %u entries\n",			 i, number);		return -EINVAL;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -