📄 udp.c
字号:
lock_sock(sk); if (likely(up->pending)) { if (unlikely(up->pending != AF_INET)) { release_sock(sk); return -EINVAL; } goto do_append_data; } release_sock(sk); } ulen += sizeof(struct udphdr); /* * Get and verify the address. */ if (msg->msg_name) { struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name; if (msg->msg_namelen < sizeof(*usin)) return -EINVAL; if (usin->sin_family != AF_INET) { if (usin->sin_family != AF_UNSPEC) return -EAFNOSUPPORT; } daddr = usin->sin_addr.s_addr; dport = usin->sin_port; if (dport == 0) return -EINVAL; } else { if (sk->sk_state != TCP_ESTABLISHED) return -EDESTADDRREQ; daddr = inet->daddr; dport = inet->dport; /* Open fast path for connected socket. Route will not be used, if at least one option is set. */ connected = 1; } ipc.addr = inet->saddr; ipc.oif = sk->sk_bound_dev_if; if (msg->msg_controllen) { err = ip_cmsg_send(msg, &ipc); if (err) return err; if (ipc.opt) free = 1; connected = 0; } if (!ipc.opt) ipc.opt = inet->opt; saddr = ipc.addr; ipc.addr = faddr = daddr; if (ipc.opt && ipc.opt->srr) { if (!daddr) return -EINVAL; faddr = ipc.opt->faddr; connected = 0; } tos = RT_TOS(inet->tos); if (sock_flag(sk, SOCK_LOCALROUTE) || (msg->msg_flags & MSG_DONTROUTE) || (ipc.opt && ipc.opt->is_strictroute)) { tos |= RTO_ONLINK; connected = 0; } if (MULTICAST(daddr)) { if (!ipc.oif) ipc.oif = inet->mc_index; if (!saddr) saddr = inet->mc_addr; connected = 0; } if (connected) rt = (struct rtable*)sk_dst_check(sk, 0); if (rt == NULL) { struct flowi fl = { .oif = ipc.oif, .nl_u = { .ip4_u = { .daddr = faddr, .saddr = saddr, .tos = tos } }, .proto = sk->sk_protocol, .uli_u = { .ports = { .sport = inet->sport, .dport = dport } } }; security_sk_classify_flow(sk, &fl); err = ip_route_output_flow(&rt, &fl, sk, 1); if (err) { if (err == -ENETUNREACH) IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES); goto out; } err = -EACCES; if ((rt->rt_flags & RTCF_BROADCAST) && !sock_flag(sk, SOCK_BROADCAST)) goto out; if (connected) sk_dst_set(sk, dst_clone(&rt->u.dst)); } if (msg->msg_flags&MSG_CONFIRM) goto do_confirm;back_from_confirm: saddr = rt->rt_src; if (!ipc.addr) daddr = ipc.addr = rt->rt_dst; lock_sock(sk); if (unlikely(up->pending)) { /* The socket is already corked while preparing it. */ /* ... which is an evident application bug. --ANK */ release_sock(sk); LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n"); err = -EINVAL; goto out; } /* * Now cork the socket to pend data. */ inet->cork.fl.fl4_dst = daddr; inet->cork.fl.fl_ip_dport = dport; inet->cork.fl.fl4_src = saddr; inet->cork.fl.fl_ip_sport = inet->sport; up->pending = AF_INET;do_append_data: up->len += ulen; getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; err = ip_append_data(sk, getfrag, msg->msg_iov, ulen, sizeof(struct udphdr), &ipc, rt, corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); if (err) udp_flush_pending_frames(sk); else if (!corkreq) err = udp_push_pending_frames(sk); else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) up->pending = 0; release_sock(sk);out: ip_rt_put(rt); if (free) kfree(ipc.opt); if (!err) return len; /* * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting * ENOBUFS might not be good (it's not tunable per se), but otherwise * we don't have a good statistic (IpOutDiscards but it can be too many * things). We could add another new stat but at least for now that * seems like overkill. */ if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite); } return err;do_confirm: dst_confirm(&rt->u.dst); if (!(msg->msg_flags&MSG_PROBE) || len) goto back_from_confirm; err = 0; goto out;}int udp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags){ struct udp_sock *up = udp_sk(sk); int ret; if (!up->pending) { struct msghdr msg = { .msg_flags = flags|MSG_MORE }; /* Call udp_sendmsg to specify destination address which * sendpage interface can't pass. * This will succeed only when the socket is connected. */ ret = udp_sendmsg(NULL, sk, &msg, 0); if (ret < 0) return ret; } lock_sock(sk); if (unlikely(!up->pending)) { release_sock(sk); LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n"); return -EINVAL; } ret = ip_append_page(sk, page, offset, size, flags); if (ret == -EOPNOTSUPP) { release_sock(sk); return sock_no_sendpage(sk->sk_socket, page, offset, size, flags); } if (ret < 0) { udp_flush_pending_frames(sk); goto out; } up->len += size; if (!(up->corkflag || (flags&MSG_MORE))) ret = udp_push_pending_frames(sk); if (!ret) ret = size;out: release_sock(sk); return ret;}/* * IOCTL requests applicable to the UDP protocol */int udp_ioctl(struct sock *sk, int cmd, unsigned long arg){ switch (cmd) { case SIOCOUTQ: { int amount = atomic_read(&sk->sk_wmem_alloc); return put_user(amount, (int __user *)arg); } case SIOCINQ: { struct sk_buff *skb; unsigned long amount; amount = 0; spin_lock_bh(&sk->sk_receive_queue.lock); skb = skb_peek(&sk->sk_receive_queue); if (skb != NULL) { /* * We will only return the amount * of this packet since that is all * that will be read. */ amount = skb->len - sizeof(struct udphdr); } spin_unlock_bh(&sk->sk_receive_queue.lock); return put_user(amount, (int __user *)arg); } default: return -ENOIOCTLCMD; } return 0;}/* * This should be easy, if there is something there we * return it, otherwise we block. */int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len){ struct inet_sock *inet = inet_sk(sk); struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name; struct sk_buff *skb; unsigned int ulen, copied; int err; int is_udplite = IS_UDPLITE(sk); /* * Check any passed addresses */ if (addr_len) *addr_len=sizeof(*sin); if (flags & MSG_ERRQUEUE) return ip_recv_error(sk, msg, len);try_again: skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out; ulen = skb->len - sizeof(struct udphdr); copied = len; if (copied > ulen) copied = ulen; else if (copied < ulen) msg->msg_flags |= MSG_TRUNC; /* * If checksum is needed at all, try to do it while copying the * data. If the data is truncated, or if we only want a partial * coverage checksum (UDP-Lite), do it before the copy. */ if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) { if (udp_lib_checksum_complete(skb)) goto csum_copy_err; } if (skb_csum_unnecessary(skb)) err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov, copied ); else { err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov); if (err == -EINVAL) goto csum_copy_err; } if (err) goto out_free; sock_recv_timestamp(msg, sk, skb); /* Copy the address. */ if (sin) { sin->sin_family = AF_INET; sin->sin_port = udp_hdr(skb)->source; sin->sin_addr.s_addr = ip_hdr(skb)->saddr; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); } if (inet->cmsg_flags) ip_cmsg_recv(msg, skb); err = copied; if (flags & MSG_TRUNC) err = ulen;out_free: skb_free_datagram(sk, skb);out: return err;csum_copy_err: UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite); skb_kill_datagram(sk, skb, flags); if (noblock) return -EAGAIN; goto try_again;}int udp_disconnect(struct sock *sk, int flags){ struct inet_sock *inet = inet_sk(sk); /* * 1003.1g - break association. */ sk->sk_state = TCP_CLOSE; inet->daddr = 0; inet->dport = 0; sk->sk_bound_dev_if = 0; if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) inet_reset_saddr(sk); if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { sk->sk_prot->unhash(sk); inet->sport = 0; } sk_dst_reset(sk); return 0;}/* returns: * -1: error * 0: success * >0: "udp encap" protocol resubmission * * Note that in the success and error cases, the skb is assumed to * have either been requeued or freed. */int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb){ struct udp_sock *up = udp_sk(sk); int rc; /* * Charge it to the socket, dropping if the queue is full. */ if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) goto drop; nf_reset(skb); if (up->encap_type) { /* * This is an encapsulation socket so pass the skb to * the socket's udp_encap_rcv() hook. Otherwise, just * fall through and pass this up the UDP socket. * up->encap_rcv() returns the following value: * =0 if skb was successfully passed to the encap * handler or was discarded by it. * >0 if skb should be passed on to UDP. * <0 if skb should be resubmitted as proto -N */ /* if we're overly short, let UDP handle it */ if (skb->len > sizeof(struct udphdr) && up->encap_rcv != NULL) { int ret; ret = (*up->encap_rcv)(sk, skb); if (ret <= 0) { UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag); return -ret; } } /* FALLTHROUGH -- it's a UDP Packet */ } /* * UDP-Lite specific tests, ignored on UDP sockets */ if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { /* * MIB statistics other than incrementing the error count are * disabled for the following two types of errors: these depend * on the application settings, not on the functioning of the * protocol stack as such. * * RFC 3828 here recommends (sec 3.3): "There should also be a * way ... to ... at least let the receiving application block * delivery of packets with coverage values less than a value * provided by the application." */ if (up->pcrlen == 0) { /* full coverage was set */ LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage " "%d while full coverage %d requested\n", UDP_SKB_CB(skb)->cscov, skb->len); goto drop; } /* The next case involves violating the min. coverage requested * by the receiver. This is subtle: if receiver wants x and x is * greater than the buffersize/MTU then receiver will complain * that it wants x while sender emits packets of smaller size y. * Therefore the above ...()->partial_cov statement is essential. */ if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: coverage %d too small, need min %d\n", UDP_SKB_CB(skb)->cscov, up->pcrlen); goto drop; } } if (sk->sk_filter) { if (udp_lib_checksum_complete(skb)) goto drop; } if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) { /* Note that an ENOMEM error is charged twice */ if (rc == -ENOMEM) UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag); goto drop; } UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag); return 0;drop: UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag); kfree_skb(skb); return -1;}/* * Multicasts and broadcasts go to each listener. * * Note: called only from the BH handler context, * so we don't need to lock the hashes. */static int __udp4_lib_mcast_deliver(struct sk_buff *skb, struct udphdr *uh, __be32 saddr, __be32 daddr, struct hlist_head udptable[]){ struct sock *sk; int dif; read_lock(&udp_hash_lock); sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]); dif = skb->dev->ifindex; sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif); if (sk) { struct sock *sknext = NULL; do { struct sk_buff *skb1 = skb; sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr, uh->source, saddr, dif); if (sknext) skb1 = skb_clone(skb, GFP_ATOMIC); if (skb1) { int ret = udp_queue_rcv_skb(sk, skb1); if (ret > 0) /* we should probably re-process instead * of dropping packets here. */ kfree_skb(skb1); } sk = sknext; } while (sknext); } else kfree_skb(skb); read_unlock(&udp_hash_lock); return 0;}/* Initialize UDP checksum. If exited with zero value (success), * CHECKSUM_UNNECESSARY means, that no more checks are required. * Otherwise, csum completion requires chacksumming packet body, * including udp header and folding it to skb->csum. */static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, int proto){ const struct iphdr *iph; int err; UDP_SKB_CB(skb)->partial_cov = 0; UDP_SKB_CB(skb)->cscov = skb->len; if (proto == IPPROTO_UDPLITE) { err = udplite_checksum_init(skb, uh); if (err) return err; } iph = ip_hdr(skb); if (uh->check == 0) { skb->ip_summed = CHECKSUM_UNNECESSARY; } else if (skb->ip_summed == CHECKSUM_COMPLETE) { if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len, proto, skb->csum)) skb->ip_summed = CHECKSUM_UNNECESSARY; } if (!skb_csum_unnecessary(skb)) skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -