⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tcp_cubic.c

📁 linux 内核源代码
💻 C
字号:
/* * TCP CUBIC: Binary Increase Congestion control for TCP v2.1 * * This is from the implementation of CUBIC TCP in * Injong Rhee, Lisong Xu. *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant *  in PFLDnet 2005 * Available from: *  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf * * Unless CUBIC is enabled and congestion window is large * this behaves the same as the original Reno. */#include <linux/mm.h>#include <linux/module.h>#include <net/tcp.h>#include <asm/div64.h>#define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation					 * max_cwnd = snd_cwnd * beta					 */#define BICTCP_B		4	 /*					  * In binary search,					  * go to point (max+min)/N					  */#define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */static int fast_convergence __read_mostly = 1;static int max_increment __read_mostly = 16;static int beta __read_mostly = 819;	/* = 819/1024 (BICTCP_BETA_SCALE) */static int initial_ssthresh __read_mostly;static int bic_scale __read_mostly = 41;static int tcp_friendliness __read_mostly = 1;static u32 cube_rtt_scale __read_mostly;static u32 beta_scale __read_mostly;static u64 cube_factor __read_mostly;/* Note parameters that are used for precomputing scale factors are read-only */module_param(fast_convergence, int, 0644);MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");module_param(max_increment, int, 0644);MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");module_param(beta, int, 0444);MODULE_PARM_DESC(beta, "beta for multiplicative increase");module_param(initial_ssthresh, int, 0644);MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");module_param(bic_scale, int, 0444);MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");module_param(tcp_friendliness, int, 0644);MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");/* BIC TCP Parameters */struct bictcp {	u32	cnt;		/* increase cwnd by 1 after ACKs */	u32 	last_max_cwnd;	/* last maximum snd_cwnd */	u32	loss_cwnd;	/* congestion window at last loss */	u32	last_cwnd;	/* the last snd_cwnd */	u32	last_time;	/* time when updated last_cwnd */	u32	bic_origin_point;/* origin point of bic function */	u32	bic_K;		/* time to origin point from the beginning of the current epoch */	u32	delay_min;	/* min delay */	u32	epoch_start;	/* beginning of an epoch */	u32	ack_cnt;	/* number of acks */	u32	tcp_cwnd;	/* estimated tcp cwnd */#define ACK_RATIO_SHIFT	4	u32	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */};static inline void bictcp_reset(struct bictcp *ca){	ca->cnt = 0;	ca->last_max_cwnd = 0;	ca->loss_cwnd = 0;	ca->last_cwnd = 0;	ca->last_time = 0;	ca->bic_origin_point = 0;	ca->bic_K = 0;	ca->delay_min = 0;	ca->epoch_start = 0;	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;	ca->ack_cnt = 0;	ca->tcp_cwnd = 0;}static void bictcp_init(struct sock *sk){	bictcp_reset(inet_csk_ca(sk));	if (initial_ssthresh)		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;}/* calculate the cubic root of x using a table lookup followed by one * Newton-Raphson iteration. * Avg err ~= 0.195% */static u32 cubic_root(u64 a){	u32 x, b, shift;	/*	 * cbrt(x) MSB values for x MSB values in [0..63].	 * Precomputed then refined by hand - Willy Tarreau	 *	 * For x in [0..63],	 *   v = cbrt(x << 18) - 1	 *   cbrt(x) = (v[x] + 10) >> 6	 */	static const u8 v[] = {		/* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,		/* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,		/* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,		/* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,		/* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,		/* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,		/* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,		/* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,	};	b = fls64(a);	if (b < 7) {		/* a in [0..63] */		return ((u32)v[(u32)a] + 35) >> 6;	}	b = ((b * 84) >> 8) - 1;	shift = (a >> (b * 3));	x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;	/*	 * Newton-Raphson iteration	 *                         2	 * x    = ( 2 * x  +  a / x  ) / 3	 *  k+1          k         k	 */	x = (2 * x + (u32)div64_64(a, (u64)x * (u64)(x - 1)));	x = ((x * 341) >> 10);	return x;}/* * Compute congestion window to use. */static inline void bictcp_update(struct bictcp *ca, u32 cwnd){	u64 offs;	u32 delta, t, bic_target, min_cnt, max_cnt;	ca->ack_cnt++;	/* count the number of ACKs */	if (ca->last_cwnd == cwnd &&	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)		return;	ca->last_cwnd = cwnd;	ca->last_time = tcp_time_stamp;	if (ca->epoch_start == 0) {		ca->epoch_start = tcp_time_stamp;	/* record the beginning of an epoch */		ca->ack_cnt = 1;			/* start counting */		ca->tcp_cwnd = cwnd;			/* syn with cubic */		if (ca->last_max_cwnd <= cwnd) {			ca->bic_K = 0;			ca->bic_origin_point = cwnd;		} else {			/* Compute new K based on			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)			 */			ca->bic_K = cubic_root(cube_factor					       * (ca->last_max_cwnd - cwnd));			ca->bic_origin_point = ca->last_max_cwnd;		}	}	/* cubic function - calc*/	/* calculate c * time^3 / rtt,	 *  while considering overflow in calculation of time^3	 * (so time^3 is done by using 64 bit)	 * and without the support of division of 64bit numbers	 * (so all divisions are done by using 32 bit)	 *  also NOTE the unit of those veriables	 *	  time  = (t - K) / 2^bictcp_HZ	 *	  c = bic_scale >> 10	 * rtt  = (srtt >> 3) / HZ	 * !!! The following code does not have overflow problems,	 * if the cwnd < 1 million packets !!!	 */	/* change the unit from HZ to bictcp_HZ */	t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start)	     << BICTCP_HZ) / HZ;	if (t < ca->bic_K)		/* t - K */		offs = ca->bic_K - t;	else		offs = t - ca->bic_K;	/* c/rtt * (t-K)^3 */	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);	if (t < ca->bic_K)                                	/* below origin*/		bic_target = ca->bic_origin_point - delta;	else                                                	/* above origin*/		bic_target = ca->bic_origin_point + delta;	/* cubic function - calc bictcp_cnt*/	if (bic_target > cwnd) {		ca->cnt = cwnd / (bic_target - cwnd);	} else {		ca->cnt = 100 * cwnd;              /* very small increment*/	}	if (ca->delay_min > 0) {		/* max increment = Smax * rtt / 0.1  */		min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);		/* use concave growth when the target is above the origin */		if (ca->cnt < min_cnt && t >= ca->bic_K)			ca->cnt = min_cnt;	}	/* slow start and low utilization  */	if (ca->loss_cwnd == 0)		/* could be aggressive in slow start */		ca->cnt = 50;	/* TCP Friendly */	if (tcp_friendliness) {		u32 scale = beta_scale;		delta = (cwnd * scale) >> 3;		while (ca->ack_cnt > delta) {		/* update tcp cwnd */			ca->ack_cnt -= delta;			ca->tcp_cwnd++;		}		if (ca->tcp_cwnd > cwnd){	/* if bic is slower than tcp */			delta = ca->tcp_cwnd - cwnd;			max_cnt = cwnd / delta;			if (ca->cnt > max_cnt)				ca->cnt = max_cnt;		}	}	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;	if (ca->cnt == 0)			/* cannot be zero */		ca->cnt = 1;}static void bictcp_cong_avoid(struct sock *sk, u32 ack,			      u32 in_flight, int data_acked){	struct tcp_sock *tp = tcp_sk(sk);	struct bictcp *ca = inet_csk_ca(sk);	if (!tcp_is_cwnd_limited(sk, in_flight))		return;	if (tp->snd_cwnd <= tp->snd_ssthresh)		tcp_slow_start(tp);	else {		bictcp_update(ca, tp->snd_cwnd);		/* In dangerous area, increase slowly.		 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd		 */		if (tp->snd_cwnd_cnt >= ca->cnt) {			if (tp->snd_cwnd < tp->snd_cwnd_clamp)				tp->snd_cwnd++;			tp->snd_cwnd_cnt = 0;		} else			tp->snd_cwnd_cnt++;	}}static u32 bictcp_recalc_ssthresh(struct sock *sk){	const struct tcp_sock *tp = tcp_sk(sk);	struct bictcp *ca = inet_csk_ca(sk);	ca->epoch_start = 0;	/* end of epoch */	/* Wmax and fast convergence */	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))			/ (2 * BICTCP_BETA_SCALE);	else		ca->last_max_cwnd = tp->snd_cwnd;	ca->loss_cwnd = tp->snd_cwnd;	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);}static u32 bictcp_undo_cwnd(struct sock *sk){	struct bictcp *ca = inet_csk_ca(sk);	return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);}static void bictcp_state(struct sock *sk, u8 new_state){	if (new_state == TCP_CA_Loss)		bictcp_reset(inet_csk_ca(sk));}/* Track delayed acknowledgment ratio using sliding window * ratio = (15*ratio + sample) / 16 */static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us){	const struct inet_connection_sock *icsk = inet_csk(sk);	struct bictcp *ca = inet_csk_ca(sk);	u32 delay;	if (icsk->icsk_ca_state == TCP_CA_Open) {		cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;		ca->delayed_ack += cnt;	}	/* Some calls are for duplicates without timetamps */	if (rtt_us < 0)		return;	/* Discard delay samples right after fast recovery */	if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)		return;	delay = usecs_to_jiffies(rtt_us) << 3;	if (delay == 0)		delay = 1;	/* first time call or link delay decreases */	if (ca->delay_min == 0 || ca->delay_min > delay)		ca->delay_min = delay;}static struct tcp_congestion_ops cubictcp = {	.init		= bictcp_init,	.ssthresh	= bictcp_recalc_ssthresh,	.cong_avoid	= bictcp_cong_avoid,	.set_state	= bictcp_state,	.undo_cwnd	= bictcp_undo_cwnd,	.pkts_acked     = bictcp_acked,	.owner		= THIS_MODULE,	.name		= "cubic",};static int __init cubictcp_register(void){	BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);	/* Precompute a bunch of the scaling factors that are used per-packet	 * based on SRTT of 100ms	 */	beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);	cube_rtt_scale = (bic_scale * 10);	/* 1024*c/rtt */	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )	 * the unit of K is bictcp_HZ=2^10, not HZ	 *	 *  c = bic_scale >> 10	 *  rtt = 100ms	 *	 * the following code has been designed and tested for	 * cwnd < 1 million packets	 * RTT < 100 seconds	 * HZ < 1,000,00  (corresponding to 10 nano-second)	 */	/* 1/c * 2^2*bictcp_HZ * srtt */	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */	/* divide by bic_scale and by constant Srtt (100ms) */	do_div(cube_factor, bic_scale * 10);	return tcp_register_congestion_control(&cubictcp);}static void __exit cubictcp_unregister(void){	tcp_unregister_congestion_control(&cubictcp);}module_init(cubictcp_register);module_exit(cubictcp_unregister);MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");MODULE_LICENSE("GPL");MODULE_DESCRIPTION("CUBIC TCP");MODULE_VERSION("2.1");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -