⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 avc.c

📁 linux 内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Implementation of the kernel access vector cache (AVC). * * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil> *           James Morris <jmorris@redhat.com> * * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com> *     Replaced the avc_lock spinlock by RCU. * * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> * *	This program is free software; you can redistribute it and/or modify *	it under the terms of the GNU General Public License version 2, *      as published by the Free Software Foundation. */#include <linux/types.h>#include <linux/stddef.h>#include <linux/kernel.h>#include <linux/slab.h>#include <linux/fs.h>#include <linux/dcache.h>#include <linux/init.h>#include <linux/skbuff.h>#include <linux/percpu.h>#include <net/sock.h>#include <linux/un.h>#include <net/af_unix.h>#include <linux/ip.h>#include <linux/audit.h>#include <linux/ipv6.h>#include <net/ipv6.h>#include "avc.h"#include "avc_ss.h"static const struct av_perm_to_string av_perm_to_string[] = {#define S_(c, v, s) { c, v, s },#include "av_perm_to_string.h"#undef S_};static const char *class_to_string[] = {#define S_(s) s,#include "class_to_string.h"#undef S_};#define TB_(s) static const char * s [] = {#define TE_(s) };#define S_(s) s,#include "common_perm_to_string.h"#undef TB_#undef TE_#undef S_static const struct av_inherit av_inherit[] = {#define S_(c, i, b) { c, common_##i##_perm_to_string, b },#include "av_inherit.h"#undef S_};const struct selinux_class_perm selinux_class_perm = {	av_perm_to_string,	ARRAY_SIZE(av_perm_to_string),	class_to_string,	ARRAY_SIZE(class_to_string),	av_inherit,	ARRAY_SIZE(av_inherit)};#define AVC_CACHE_SLOTS			512#define AVC_DEF_CACHE_THRESHOLD		512#define AVC_CACHE_RECLAIM		16#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS#define avc_cache_stats_incr(field) 				\do {								\	per_cpu(avc_cache_stats, get_cpu()).field++;		\	put_cpu();						\} while (0)#else#define avc_cache_stats_incr(field)	do {} while (0)#endifstruct avc_entry {	u32			ssid;	u32			tsid;	u16			tclass;	struct av_decision	avd;	atomic_t		used;	/* used recently */};struct avc_node {	struct avc_entry	ae;	struct list_head	list;	struct rcu_head         rhead;};struct avc_cache {	struct list_head	slots[AVC_CACHE_SLOTS];	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */	atomic_t		lru_hint;	/* LRU hint for reclaim scan */	atomic_t		active_nodes;	u32			latest_notif;	/* latest revocation notification */};struct avc_callback_node {	int (*callback) (u32 event, u32 ssid, u32 tsid,	                 u16 tclass, u32 perms,	                 u32 *out_retained);	u32 events;	u32 ssid;	u32 tsid;	u16 tclass;	u32 perms;	struct avc_callback_node *next;};/* Exported via selinufs */unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;#ifdef CONFIG_SECURITY_SELINUX_AVC_STATSDEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };#endifstatic struct avc_cache avc_cache;static struct avc_callback_node *avc_callbacks;static struct kmem_cache *avc_node_cachep;static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass){	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);}/** * avc_dump_av - Display an access vector in human-readable form. * @tclass: target security class * @av: access vector */static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av){	const char **common_pts = NULL;	u32 common_base = 0;	int i, i2, perm;	if (av == 0) {		audit_log_format(ab, " null");		return;	}	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {		if (av_inherit[i].tclass == tclass) {			common_pts = av_inherit[i].common_pts;			common_base = av_inherit[i].common_base;			break;		}	}	audit_log_format(ab, " {");	i = 0;	perm = 1;	while (perm < common_base) {		if (perm & av) {			audit_log_format(ab, " %s", common_pts[i]);			av &= ~perm;		}		i++;		perm <<= 1;	}	while (i < sizeof(av) * 8) {		if (perm & av) {			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {				if ((av_perm_to_string[i2].tclass == tclass) &&				    (av_perm_to_string[i2].value == perm))					break;			}			if (i2 < ARRAY_SIZE(av_perm_to_string)) {				audit_log_format(ab, " %s",						 av_perm_to_string[i2].name);				av &= ~perm;			}		}		i++;		perm <<= 1;	}	if (av)		audit_log_format(ab, " 0x%x", av);	audit_log_format(ab, " }");}/** * avc_dump_query - Display a SID pair and a class in human-readable form. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class */static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass){	int rc;	char *scontext;	u32 scontext_len; 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);	if (rc)		audit_log_format(ab, "ssid=%d", ssid);	else {		audit_log_format(ab, "scontext=%s", scontext);		kfree(scontext);	}	rc = security_sid_to_context(tsid, &scontext, &scontext_len);	if (rc)		audit_log_format(ab, " tsid=%d", tsid);	else {		audit_log_format(ab, " tcontext=%s", scontext);		kfree(scontext);	}	BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);}/** * avc_init - Initialize the AVC. * * Initialize the access vector cache. */void __init avc_init(void){	int i;	for (i = 0; i < AVC_CACHE_SLOTS; i++) {		INIT_LIST_HEAD(&avc_cache.slots[i]);		spin_lock_init(&avc_cache.slots_lock[i]);	}	atomic_set(&avc_cache.active_nodes, 0);	atomic_set(&avc_cache.lru_hint, 0);	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),					     0, SLAB_PANIC, NULL);	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");}int avc_get_hash_stats(char *page){	int i, chain_len, max_chain_len, slots_used;	struct avc_node *node;	rcu_read_lock();	slots_used = 0;	max_chain_len = 0;	for (i = 0; i < AVC_CACHE_SLOTS; i++) {		if (!list_empty(&avc_cache.slots[i])) {			slots_used++;			chain_len = 0;			list_for_each_entry_rcu(node, &avc_cache.slots[i], list)				chain_len++;			if (chain_len > max_chain_len)				max_chain_len = chain_len;		}	}	rcu_read_unlock();	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"			 "longest chain: %d\n",			 atomic_read(&avc_cache.active_nodes),			 slots_used, AVC_CACHE_SLOTS, max_chain_len);}static void avc_node_free(struct rcu_head *rhead){	struct avc_node *node = container_of(rhead, struct avc_node, rhead);	kmem_cache_free(avc_node_cachep, node);	avc_cache_stats_incr(frees);}static void avc_node_delete(struct avc_node *node){	list_del_rcu(&node->list);	call_rcu(&node->rhead, avc_node_free);	atomic_dec(&avc_cache.active_nodes);}static void avc_node_kill(struct avc_node *node){	kmem_cache_free(avc_node_cachep, node);	avc_cache_stats_incr(frees);	atomic_dec(&avc_cache.active_nodes);}static void avc_node_replace(struct avc_node *new, struct avc_node *old){	list_replace_rcu(&old->list, &new->list);	call_rcu(&old->rhead, avc_node_free);	atomic_dec(&avc_cache.active_nodes);}static inline int avc_reclaim_node(void){	struct avc_node *node;	int hvalue, try, ecx;	unsigned long flags;	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))			continue;		list_for_each_entry(node, &avc_cache.slots[hvalue], list) {			if (atomic_dec_and_test(&node->ae.used)) {				/* Recently Unused */				avc_node_delete(node);				avc_cache_stats_incr(reclaims);				ecx++;				if (ecx >= AVC_CACHE_RECLAIM) {					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);					goto out;				}			}		}		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);	}out:	return ecx;}static struct avc_node *avc_alloc_node(void){	struct avc_node *node;	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);	if (!node)		goto out;	INIT_RCU_HEAD(&node->rhead);	INIT_LIST_HEAD(&node->list);	atomic_set(&node->ae.used, 1);	avc_cache_stats_incr(allocations);	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)		avc_reclaim_node();out:	return node;}static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae){	node->ae.ssid = ssid;	node->ae.tsid = tsid;	node->ae.tclass = tclass;	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));}static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass){	struct avc_node *node, *ret = NULL;	int hvalue;	hvalue = avc_hash(ssid, tsid, tclass);	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {		if (ssid == node->ae.ssid &&		    tclass == node->ae.tclass &&		    tsid == node->ae.tsid) {			ret = node;			break;		}	}	if (ret == NULL) {		/* cache miss */		goto out;	}	/* cache hit */	if (atomic_read(&ret->ae.used) != 1)		atomic_set(&ret->ae.used, 1);out:	return ret;}/** * avc_lookup - Look up an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * * Look up an AVC entry that is valid for the * @requested permissions between the SID pair * (@ssid, @tsid), interpreting the permissions * based on @tclass.  If a valid AVC entry exists, * then this function return the avc_node. * Otherwise, this function returns NULL. */static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested){	struct avc_node *node;	avc_cache_stats_incr(lookups);	node = avc_search_node(ssid, tsid, tclass);	if (node && ((node->ae.avd.decided & requested) == requested)) {		avc_cache_stats_incr(hits);		goto out;	}	node = NULL;	avc_cache_stats_incr(misses);out:	return node;}static int avc_latest_notif_update(int seqno, int is_insert){	int ret = 0;	static DEFINE_SPINLOCK(notif_lock);	unsigned long flag;	spin_lock_irqsave(&notif_lock, flag);	if (is_insert) {		if (seqno < avc_cache.latest_notif) {			printk(KERN_WARNING "avc:  seqno %d < latest_notif %d\n",			       seqno, avc_cache.latest_notif);			ret = -EAGAIN;		}	} else {		if (seqno > avc_cache.latest_notif)			avc_cache.latest_notif = seqno;	}	spin_unlock_irqrestore(&notif_lock, flag);	return ret;}/** * avc_insert - Insert an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @ae: AVC entry * * Insert an AVC entry for the SID pair * (@ssid, @tsid) and class @tclass. * The access vectors and the sequence number are * normally provided by the security server in * response to a security_compute_av() call.  If the * sequence number @ae->avd.seqno is not less than the latest * revocation notification, then the function copies * the access vectors into a cache entry, returns * avc_node inserted. Otherwise, this function returns NULL. */static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae){	struct avc_node *pos, *node = NULL;	int hvalue;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -