📄 aops.c
字号:
if (is_mft && sync) {do_mirror: for (i = 0; i < nr_bhs; i++) { unsigned long mft_no; unsigned int ofs; /* * Skip buffers which are not at the beginning of * records. */ if (i % bhs_per_rec) continue; tbh = bhs[i]; /* Skip removed buffers (and hence records). */ if (!tbh) continue; ofs = bh_offset(tbh); /* Get the mft record number. */ mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) >> rec_size_bits; if (mft_no < vol->mftmirr_size) ntfs_sync_mft_mirror(vol, mft_no, (MFT_RECORD*)(kaddr + ofs), sync); } if (!sync) goto do_wait; } /* Remove the mst protection fixups again. */ for (i = 0; i < nr_bhs; i++) { if (!(i % bhs_per_rec)) { tbh = bhs[i]; if (!tbh) continue; post_write_mst_fixup((NTFS_RECORD*)(kaddr + bh_offset(tbh))); } } flush_dcache_page(page);unm_done: /* Unlock any locked inodes. */ while (nr_locked_nis-- > 0) { ntfs_inode *tni, *base_tni; tni = locked_nis[nr_locked_nis]; /* Get the base inode. */ mutex_lock(&tni->extent_lock); if (tni->nr_extents >= 0) base_tni = tni; else { base_tni = tni->ext.base_ntfs_ino; BUG_ON(!base_tni); } mutex_unlock(&tni->extent_lock); ntfs_debug("Unlocking %s inode 0x%lx.", tni == base_tni ? "base" : "extent", tni->mft_no); mutex_unlock(&tni->mrec_lock); atomic_dec(&tni->count); iput(VFS_I(base_tni)); } SetPageUptodate(page); kunmap(page);done: if (unlikely(err && err != -ENOMEM)) { /* * Set page error if there is only one ntfs record in the page. * Otherwise we would loose per-record granularity. */ if (ni->itype.index.block_size == PAGE_CACHE_SIZE) SetPageError(page); NVolSetErrors(vol); } if (page_is_dirty) { ntfs_debug("Page still contains one or more dirty ntfs " "records. Redirtying the page starting at " "record 0x%lx.", page->index << (PAGE_CACHE_SHIFT - rec_size_bits)); redirty_page_for_writepage(wbc, page); unlock_page(page); } else { /* * Keep the VM happy. This must be done otherwise the * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though * the page is clean. */ BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); end_page_writeback(page); } if (likely(!err)) ntfs_debug("Done."); return err;}/** * ntfs_writepage - write a @page to the backing store * @page: page cache page to write out * @wbc: writeback control structure * * This is called from the VM when it wants to have a dirty ntfs page cache * page cleaned. The VM has already locked the page and marked it clean. * * For non-resident attributes, ntfs_writepage() writes the @page by calling * the ntfs version of the generic block_write_full_page() function, * ntfs_write_block(), which in turn if necessary creates and writes the * buffers associated with the page asynchronously. * * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying * the data to the mft record (which at this stage is most likely in memory). * The mft record is then marked dirty and written out asynchronously via the * vfs inode dirty code path for the inode the mft record belongs to or via the * vm page dirty code path for the page the mft record is in. * * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page(). * * Return 0 on success and -errno on error. */static int ntfs_writepage(struct page *page, struct writeback_control *wbc){ loff_t i_size; struct inode *vi = page->mapping->host; ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); char *addr; ntfs_attr_search_ctx *ctx = NULL; MFT_RECORD *m = NULL; u32 attr_len; int err;retry_writepage: BUG_ON(!PageLocked(page)); i_size = i_size_read(vi); /* Is the page fully outside i_size? (truncate in progress) */ if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT)) { /* * The page may have dirty, unmapped buffers. Make them * freeable here, so the page does not leak. */ block_invalidatepage(page, 0); unlock_page(page); ntfs_debug("Write outside i_size - truncated?"); return 0; } /* * Only $DATA attributes can be encrypted and only unnamed $DATA * attributes can be compressed. Index root can have the flags set but * this means to create compressed/encrypted files, not that the * attribute is compressed/encrypted. Note we need to check for * AT_INDEX_ALLOCATION since this is the type of both directory and * index inodes. */ if (ni->type != AT_INDEX_ALLOCATION) { /* If file is encrypted, deny access, just like NT4. */ if (NInoEncrypted(ni)) { unlock_page(page); BUG_ON(ni->type != AT_DATA); ntfs_debug("Denying write access to encrypted file."); return -EACCES; } /* Compressed data streams are handled in compress.c. */ if (NInoNonResident(ni) && NInoCompressed(ni)) { BUG_ON(ni->type != AT_DATA); BUG_ON(ni->name_len); // TODO: Implement and replace this with // return ntfs_write_compressed_block(page); unlock_page(page); ntfs_error(vi->i_sb, "Writing to compressed files is " "not supported yet. Sorry."); return -EOPNOTSUPP; } // TODO: Implement and remove this check. if (NInoNonResident(ni) && NInoSparse(ni)) { unlock_page(page); ntfs_error(vi->i_sb, "Writing to sparse files is not " "supported yet. Sorry."); return -EOPNOTSUPP; } } /* NInoNonResident() == NInoIndexAllocPresent() */ if (NInoNonResident(ni)) { /* We have to zero every time due to mmap-at-end-of-file. */ if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) { /* The page straddles i_size. */ unsigned int ofs = i_size & ~PAGE_CACHE_MASK; zero_user_page(page, ofs, PAGE_CACHE_SIZE - ofs, KM_USER0); } /* Handle mst protected attributes. */ if (NInoMstProtected(ni)) return ntfs_write_mst_block(page, wbc); /* Normal, non-resident data stream. */ return ntfs_write_block(page, wbc); } /* * Attribute is resident, implying it is not compressed, encrypted, or * mst protected. This also means the attribute is smaller than an mft * record and hence smaller than a page, so can simply return error on * any pages with index above 0. Note the attribute can actually be * marked compressed but if it is resident the actual data is not * compressed so we are ok to ignore the compressed flag here. */ BUG_ON(page_has_buffers(page)); BUG_ON(!PageUptodate(page)); if (unlikely(page->index > 0)) { ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. " "Aborting write.", page->index); BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); end_page_writeback(page); return -EIO; } if (!NInoAttr(ni)) base_ni = ni; else base_ni = ni->ext.base_ntfs_ino; /* Map, pin, and lock the mft record. */ m = map_mft_record(base_ni); if (IS_ERR(m)) { err = PTR_ERR(m); m = NULL; ctx = NULL; goto err_out; } /* * If a parallel write made the attribute non-resident, drop the mft * record and retry the writepage. */ if (unlikely(NInoNonResident(ni))) { unmap_mft_record(base_ni); goto retry_writepage; } ctx = ntfs_attr_get_search_ctx(base_ni, m); if (unlikely(!ctx)) { err = -ENOMEM; goto err_out; } err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); if (unlikely(err)) goto err_out; /* * Keep the VM happy. This must be done otherwise the radix-tree tag * PAGECACHE_TAG_DIRTY remains set even though the page is clean. */ BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); i_size = i_size_read(vi); if (unlikely(attr_len > i_size)) { /* Race with shrinking truncate or a failed truncate. */ attr_len = i_size; /* * If the truncate failed, fix it up now. If a concurrent * truncate, we do its job, so it does not have to do anything. */ err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr, attr_len); /* Shrinking cannot fail. */ BUG_ON(err); } addr = kmap_atomic(page, KM_USER0); /* Copy the data from the page to the mft record. */ memcpy((u8*)ctx->attr + le16_to_cpu(ctx->attr->data.resident.value_offset), addr, attr_len); /* Zero out of bounds area in the page cache page. */ memset(addr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); kunmap_atomic(addr, KM_USER0); flush_dcache_page(page); flush_dcache_mft_record_page(ctx->ntfs_ino); /* We are done with the page. */ end_page_writeback(page); /* Finally, mark the mft record dirty, so it gets written back. */ mark_mft_record_dirty(ctx->ntfs_ino); ntfs_attr_put_search_ctx(ctx); unmap_mft_record(base_ni); return 0;err_out: if (err == -ENOMEM) { ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " "page so we try again later."); /* * Put the page back on mapping->dirty_pages, but leave its * buffers' dirty state as-is. */ redirty_page_for_writepage(wbc, page); err = 0; } else { ntfs_error(vi->i_sb, "Resident attribute write failed with " "error %i.", err); SetPageError(page); NVolSetErrors(ni->vol); } unlock_page(page); if (ctx) ntfs_attr_put_search_ctx(ctx); if (m) unmap_mft_record(base_ni); return err;}#endif /* NTFS_RW *//** * ntfs_aops - general address space operations for inodes and attributes */const struct address_space_operations ntfs_aops = { .readpage = ntfs_readpage, /* Fill page with data. */ .sync_page = block_sync_page, /* Currently, just unplugs the disk request queue. */#ifdef NTFS_RW .writepage = ntfs_writepage, /* Write dirty page to disk. */#endif /* NTFS_RW */ .migratepage = buffer_migrate_page, /* Move a page cache page from one physical page to an other. */};/** * ntfs_mst_aops - general address space operations for mst protecteed inodes * and attributes */const struct address_space_operations ntfs_mst_aops = { .readpage = ntfs_readpage, /* Fill page with data. */ .sync_page = block_sync_page, /* Currently, just unplugs the disk request queue. */#ifdef NTFS_RW .writepage = ntfs_writepage, /* Write dirty page to disk. */ .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty without touching the buffers belonging to the page. */#endif /* NTFS_RW */ .migratepage = buffer_migrate_page, /* Move a page cache page from one physical page to an other. */};#ifdef NTFS_RW/** * mark_ntfs_record_dirty - mark an ntfs record dirty * @page: page containing the ntfs record to mark dirty * @ofs: byte offset within @page at which the ntfs record begins * * Set the buffers and the page in which the ntfs record is located dirty. * * The latter also marks the vfs inode the ntfs record belongs to dirty * (I_DIRTY_PAGES only). * * If the page does not have buffers, we create them and set them uptodate. * The page may not be locked which is why we need to handle the buffers under * the mapping->private_lock. Once the buffers are marked dirty we no longer * need the lock since try_to_free_buffers() does not free dirty buffers. */void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { struct address_space *mapping = page->mapping; ntfs_inode *ni = NTFS_I(mapping->host); struct buffer_head *bh, *head, *buffers_to_free = NULL; unsigned int end, bh_size, bh_ofs; BUG_ON(!PageUptodate(page)); end = ofs + ni->itype.index.block_size; bh_size = VFS_I(ni)->i_sb->s_blocksize; spin_lock(&mapping->private_lock); if (unlikely(!page_has_buffers(page))) { spin_unlock(&mapping->private_lock); bh = head = alloc_page_buffers(page, bh_size, 1); spin_lock(&mapping->private_lock); if (likely(!page_has_buffers(page))) { struct buffer_head *tail; do { set_buffer_uptodate(bh); tail = bh; bh = bh->b_this_page; } while (bh); tail->b_this_page = head; attach_page_buffers(page, head); } else buffers_to_free = bh; } bh = head = page_buffers(page); BUG_ON(!bh); do { bh_ofs = bh_offset(bh); if (bh_ofs + bh_size <= ofs) continue; if (unlikely(bh_ofs >= end)) break; set_buffer_dirty(bh); } while ((bh = bh->b_this_page) != head); spin_unlock(&mapping->private_lock); __set_page_dirty_nobuffers(page); if (unlikely(buffers_to_free)) { do { bh = buffers_to_free->b_this_page; free_buffer_head(buffers_to_free); buffers_to_free = bh; } while (buffers_to_free); }}#endif /* NTFS_RW */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -