📄 transaction.c
字号:
}/* * This buffer is no longer needed. If it is on an older transaction's * checkpoint list we need to record it on this transaction's forget list * to pin this buffer (and hence its checkpointing transaction) down until * this transaction commits. If the buffer isn't on a checkpoint list, we * release it. * Returns non-zero if JBD no longer has an interest in the buffer. * * Called under j_list_lock. * * Called under jbd_lock_bh_state(bh). */static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction){ int may_free = 1; struct buffer_head *bh = jh2bh(jh); __journal_unfile_buffer(jh); if (jh->b_cp_transaction) { JBUFFER_TRACE(jh, "on running+cp transaction"); __journal_file_buffer(jh, transaction, BJ_Forget); clear_buffer_jbddirty(bh); may_free = 0; } else { JBUFFER_TRACE(jh, "on running transaction"); journal_remove_journal_head(bh); __brelse(bh); } return may_free;}/* * journal_invalidatepage * * This code is tricky. It has a number of cases to deal with. * * There are two invariants which this code relies on: * * i_size must be updated on disk before we start calling invalidatepage on the * data. * * This is done in ext3 by defining an ext3_setattr method which * updates i_size before truncate gets going. By maintaining this * invariant, we can be sure that it is safe to throw away any buffers * attached to the current transaction: once the transaction commits, * we know that the data will not be needed. * * Note however that we can *not* throw away data belonging to the * previous, committing transaction! * * Any disk blocks which *are* part of the previous, committing * transaction (and which therefore cannot be discarded immediately) are * not going to be reused in the new running transaction * * The bitmap committed_data images guarantee this: any block which is * allocated in one transaction and removed in the next will be marked * as in-use in the committed_data bitmap, so cannot be reused until * the next transaction to delete the block commits. This means that * leaving committing buffers dirty is quite safe: the disk blocks * cannot be reallocated to a different file and so buffer aliasing is * not possible. * * * The above applies mainly to ordered data mode. In writeback mode we * don't make guarantees about the order in which data hits disk --- in * particular we don't guarantee that new dirty data is flushed before * transaction commit --- so it is always safe just to discard data * immediately in that mode. --sct *//* * The journal_unmap_buffer helper function returns zero if the buffer * concerned remains pinned as an anonymous buffer belonging to an older * transaction. * * We're outside-transaction here. Either or both of j_running_transaction * and j_committing_transaction may be NULL. */static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh){ transaction_t *transaction; struct journal_head *jh; int may_free = 1; int ret; BUFFER_TRACE(bh, "entry"); /* * It is safe to proceed here without the j_list_lock because the * buffers cannot be stolen by try_to_free_buffers as long as we are * holding the page lock. --sct */ if (!buffer_jbd(bh)) goto zap_buffer_unlocked; spin_lock(&journal->j_state_lock); jbd_lock_bh_state(bh); spin_lock(&journal->j_list_lock); jh = journal_grab_journal_head(bh); if (!jh) goto zap_buffer_no_jh; transaction = jh->b_transaction; if (transaction == NULL) { /* First case: not on any transaction. If it * has no checkpoint link, then we can zap it: * it's a writeback-mode buffer so we don't care * if it hits disk safely. */ if (!jh->b_cp_transaction) { JBUFFER_TRACE(jh, "not on any transaction: zap"); goto zap_buffer; } if (!buffer_dirty(bh)) { /* bdflush has written it. We can drop it now */ goto zap_buffer; } /* OK, it must be in the journal but still not * written fully to disk: it's metadata or * journaled data... */ if (journal->j_running_transaction) { /* ... and once the current transaction has * committed, the buffer won't be needed any * longer. */ JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); ret = __dispose_buffer(jh, journal->j_running_transaction); journal_put_journal_head(jh); spin_unlock(&journal->j_list_lock); jbd_unlock_bh_state(bh); spin_unlock(&journal->j_state_lock); return ret; } else { /* There is no currently-running transaction. So the * orphan record which we wrote for this file must have * passed into commit. We must attach this buffer to * the committing transaction, if it exists. */ if (journal->j_committing_transaction) { JBUFFER_TRACE(jh, "give to committing trans"); ret = __dispose_buffer(jh, journal->j_committing_transaction); journal_put_journal_head(jh); spin_unlock(&journal->j_list_lock); jbd_unlock_bh_state(bh); spin_unlock(&journal->j_state_lock); return ret; } else { /* The orphan record's transaction has * committed. We can cleanse this buffer */ clear_buffer_jbddirty(bh); goto zap_buffer; } } } else if (transaction == journal->j_committing_transaction) { JBUFFER_TRACE(jh, "on committing transaction"); if (jh->b_jlist == BJ_Locked) { /* * The buffer is on the committing transaction's locked * list. We have the buffer locked, so I/O has * completed. So we can nail the buffer now. */ may_free = __dispose_buffer(jh, transaction); goto zap_buffer; } /* * If it is committing, we simply cannot touch it. We * can remove it's next_transaction pointer from the * running transaction if that is set, but nothing * else. */ set_buffer_freed(bh); if (jh->b_next_transaction) { J_ASSERT(jh->b_next_transaction == journal->j_running_transaction); jh->b_next_transaction = NULL; } journal_put_journal_head(jh); spin_unlock(&journal->j_list_lock); jbd_unlock_bh_state(bh); spin_unlock(&journal->j_state_lock); return 0; } else { /* Good, the buffer belongs to the running transaction. * We are writing our own transaction's data, not any * previous one's, so it is safe to throw it away * (remember that we expect the filesystem to have set * i_size already for this truncate so recovery will not * expose the disk blocks we are discarding here.) */ J_ASSERT_JH(jh, transaction == journal->j_running_transaction); JBUFFER_TRACE(jh, "on running transaction"); may_free = __dispose_buffer(jh, transaction); }zap_buffer: journal_put_journal_head(jh);zap_buffer_no_jh: spin_unlock(&journal->j_list_lock); jbd_unlock_bh_state(bh); spin_unlock(&journal->j_state_lock);zap_buffer_unlocked: clear_buffer_dirty(bh); J_ASSERT_BH(bh, !buffer_jbddirty(bh)); clear_buffer_mapped(bh); clear_buffer_req(bh); clear_buffer_new(bh); bh->b_bdev = NULL; return may_free;}/** * void journal_invalidatepage() * @journal: journal to use for flush... * @page: page to flush * @offset: length of page to invalidate. * * Reap page buffers containing data after offset in page. * */void journal_invalidatepage(journal_t *journal, struct page *page, unsigned long offset){ struct buffer_head *head, *bh, *next; unsigned int curr_off = 0; int may_free = 1; if (!PageLocked(page)) BUG(); if (!page_has_buffers(page)) return; /* We will potentially be playing with lists other than just the * data lists (especially for journaled data mode), so be * cautious in our locking. */ head = bh = page_buffers(page); do { unsigned int next_off = curr_off + bh->b_size; next = bh->b_this_page; if (offset <= curr_off) { /* This block is wholly outside the truncation point */ lock_buffer(bh); may_free &= journal_unmap_buffer(journal, bh); unlock_buffer(bh); } curr_off = next_off; bh = next; } while (bh != head); if (!offset) { if (may_free && try_to_free_buffers(page)) J_ASSERT(!page_has_buffers(page)); }}/* * File a buffer on the given transaction list. */void __journal_file_buffer(struct journal_head *jh, transaction_t *transaction, int jlist){ struct journal_head **list = NULL; int was_dirty = 0; struct buffer_head *bh = jh2bh(jh); J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); assert_spin_locked(&transaction->t_journal->j_list_lock); J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); J_ASSERT_JH(jh, jh->b_transaction == transaction || jh->b_transaction == NULL); if (jh->b_transaction && jh->b_jlist == jlist) return; /* The following list of buffer states needs to be consistent * with __jbd_unexpected_dirty_buffer()'s handling of dirty * state. */ if (jlist == BJ_Metadata || jlist == BJ_Reserved || jlist == BJ_Shadow || jlist == BJ_Forget) { if (test_clear_buffer_dirty(bh) || test_clear_buffer_jbddirty(bh)) was_dirty = 1; } if (jh->b_transaction) __journal_temp_unlink_buffer(jh); jh->b_transaction = transaction; switch (jlist) { case BJ_None: J_ASSERT_JH(jh, !jh->b_committed_data); J_ASSERT_JH(jh, !jh->b_frozen_data); return; case BJ_SyncData: list = &transaction->t_sync_datalist; break; case BJ_Metadata: transaction->t_nr_buffers++; list = &transaction->t_buffers; break; case BJ_Forget: list = &transaction->t_forget; break; case BJ_IO: list = &transaction->t_iobuf_list; break; case BJ_Shadow: list = &transaction->t_shadow_list; break; case BJ_LogCtl: list = &transaction->t_log_list; break; case BJ_Reserved: list = &transaction->t_reserved_list; break; case BJ_Locked: list = &transaction->t_locked_list; break; } __blist_add_buffer(list, jh); jh->b_jlist = jlist; if (was_dirty) set_buffer_jbddirty(bh);}void journal_file_buffer(struct journal_head *jh, transaction_t *transaction, int jlist){ jbd_lock_bh_state(jh2bh(jh)); spin_lock(&transaction->t_journal->j_list_lock); __journal_file_buffer(jh, transaction, jlist); spin_unlock(&transaction->t_journal->j_list_lock); jbd_unlock_bh_state(jh2bh(jh));}/* * Remove a buffer from its current buffer list in preparation for * dropping it from its current transaction entirely. If the buffer has * already started to be used by a subsequent transaction, refile the * buffer on that transaction's metadata list. * * Called under journal->j_list_lock * * Called under jbd_lock_bh_state(jh2bh(jh)) */void __journal_refile_buffer(struct journal_head *jh){ int was_dirty; struct buffer_head *bh = jh2bh(jh); J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); if (jh->b_transaction) assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); /* If the buffer is now unused, just drop it. */ if (jh->b_next_transaction == NULL) { __journal_unfile_buffer(jh); return; } /* * It has been modified by a later transaction: add it to the new * transaction's metadata list. */ was_dirty = test_clear_buffer_jbddirty(bh); __journal_temp_unlink_buffer(jh); jh->b_transaction = jh->b_next_transaction; jh->b_next_transaction = NULL; __journal_file_buffer(jh, jh->b_transaction, was_dirty ? BJ_Metadata : BJ_Reserved); J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); if (was_dirty) set_buffer_jbddirty(bh);}/* * For the unlocked version of this call, also make sure that any * hanging journal_head is cleaned up if necessary. * * __journal_refile_buffer is usually called as part of a single locked * operation on a buffer_head, in which the caller is probably going to * be hooking the journal_head onto other lists. In that case it is up * to the caller to remove the journal_head if necessary. For the * unlocked journal_refile_buffer call, the caller isn't going to be * doing anything else to the buffer so we need to do the cleanup * ourselves to avoid a jh leak. * * *** The journal_head may be freed by this call! *** */void journal_refile_buffer(journal_t *journal, struct journal_head *jh){ struct buffer_head *bh = jh2bh(jh); jbd_lock_bh_state(bh); spin_lock(&journal->j_list_lock); __journal_refile_buffer(jh); jbd_unlock_bh_state(bh); journal_remove_journal_head(bh); spin_unlock(&journal->j_list_lock); __brelse(bh);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -