📄 transaction.c
字号:
/* * linux/fs/jbd2/transaction.c * * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 * * Copyright 1998 Red Hat corp --- All Rights Reserved * * This file is part of the Linux kernel and is made available under * the terms of the GNU General Public License, version 2, or at your * option, any later version, incorporated herein by reference. * * Generic filesystem transaction handling code; part of the ext2fs * journaling system. * * This file manages transactions (compound commits managed by the * journaling code) and handles (individual atomic operations by the * filesystem). */#include <linux/time.h>#include <linux/fs.h>#include <linux/jbd2.h>#include <linux/errno.h>#include <linux/slab.h>#include <linux/timer.h>#include <linux/mm.h>#include <linux/highmem.h>static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);/* * jbd2_get_transaction: obtain a new transaction_t object. * * Simply allocate and initialise a new transaction. Create it in * RUNNING state and add it to the current journal (which should not * have an existing running transaction: we only make a new transaction * once we have started to commit the old one). * * Preconditions: * The journal MUST be locked. We don't perform atomic mallocs on the * new transaction and we can't block without protecting against other * processes trying to touch the journal while it is in transition. * * Called under j_state_lock */static transaction_t *jbd2_get_transaction(journal_t *journal, transaction_t *transaction){ transaction->t_journal = journal; transaction->t_state = T_RUNNING; transaction->t_tid = journal->j_transaction_sequence++; transaction->t_expires = jiffies + journal->j_commit_interval; spin_lock_init(&transaction->t_handle_lock); /* Set up the commit timer for the new transaction. */ journal->j_commit_timer.expires = transaction->t_expires; add_timer(&journal->j_commit_timer); J_ASSERT(journal->j_running_transaction == NULL); journal->j_running_transaction = transaction; return transaction;}/* * Handle management. * * A handle_t is an object which represents a single atomic update to a * filesystem, and which tracks all of the modifications which form part * of that one update. *//* * start_this_handle: Given a handle, deal with any locking or stalling * needed to make sure that there is enough journal space for the handle * to begin. Attach the handle to a transaction and set up the * transaction's buffer credits. */static int start_this_handle(journal_t *journal, handle_t *handle){ transaction_t *transaction; int needed; int nblocks = handle->h_buffer_credits; transaction_t *new_transaction = NULL; int ret = 0; if (nblocks > journal->j_max_transaction_buffers) { printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n", current->comm, nblocks, journal->j_max_transaction_buffers); ret = -ENOSPC; goto out; }alloc_transaction: if (!journal->j_running_transaction) { new_transaction = kzalloc(sizeof(*new_transaction), GFP_NOFS|__GFP_NOFAIL); if (!new_transaction) { ret = -ENOMEM; goto out; } } jbd_debug(3, "New handle %p going live.\n", handle);repeat: /* * We need to hold j_state_lock until t_updates has been incremented, * for proper journal barrier handling */ spin_lock(&journal->j_state_lock);repeat_locked: if (is_journal_aborted(journal) || (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { spin_unlock(&journal->j_state_lock); ret = -EROFS; goto out; } /* Wait on the journal's transaction barrier if necessary */ if (journal->j_barrier_count) { spin_unlock(&journal->j_state_lock); wait_event(journal->j_wait_transaction_locked, journal->j_barrier_count == 0); goto repeat; } if (!journal->j_running_transaction) { if (!new_transaction) { spin_unlock(&journal->j_state_lock); goto alloc_transaction; } jbd2_get_transaction(journal, new_transaction); new_transaction = NULL; } transaction = journal->j_running_transaction; /* * If the current transaction is locked down for commit, wait for the * lock to be released. */ if (transaction->t_state == T_LOCKED) { DEFINE_WAIT(wait); prepare_to_wait(&journal->j_wait_transaction_locked, &wait, TASK_UNINTERRUPTIBLE); spin_unlock(&journal->j_state_lock); schedule(); finish_wait(&journal->j_wait_transaction_locked, &wait); goto repeat; } /* * If there is not enough space left in the log to write all potential * buffers requested by this operation, we need to stall pending a log * checkpoint to free some more log space. */ spin_lock(&transaction->t_handle_lock); needed = transaction->t_outstanding_credits + nblocks; if (needed > journal->j_max_transaction_buffers) { /* * If the current transaction is already too large, then start * to commit it: we can then go back and attach this handle to * a new transaction. */ DEFINE_WAIT(wait); jbd_debug(2, "Handle %p starting new commit...\n", handle); spin_unlock(&transaction->t_handle_lock); prepare_to_wait(&journal->j_wait_transaction_locked, &wait, TASK_UNINTERRUPTIBLE); __jbd2_log_start_commit(journal, transaction->t_tid); spin_unlock(&journal->j_state_lock); schedule(); finish_wait(&journal->j_wait_transaction_locked, &wait); goto repeat; } /* * The commit code assumes that it can get enough log space * without forcing a checkpoint. This is *critical* for * correctness: a checkpoint of a buffer which is also * associated with a committing transaction creates a deadlock, * so commit simply cannot force through checkpoints. * * We must therefore ensure the necessary space in the journal * *before* starting to dirty potentially checkpointed buffers * in the new transaction. * * The worst part is, any transaction currently committing can * reduce the free space arbitrarily. Be careful to account for * those buffers when checkpointing. */ /* * @@@ AKPM: This seems rather over-defensive. We're giving commit * a _lot_ of headroom: 1/4 of the journal plus the size of * the committing transaction. Really, we only need to give it * committing_transaction->t_outstanding_credits plus "enough" for * the log control blocks. * Also, this test is inconsitent with the matching one in * jbd2_journal_extend(). */ if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); spin_unlock(&transaction->t_handle_lock); __jbd2_log_wait_for_space(journal); goto repeat_locked; } /* OK, account for the buffers that this operation expects to * use and add the handle to the running transaction. */ handle->h_transaction = transaction; transaction->t_outstanding_credits += nblocks; transaction->t_updates++; transaction->t_handle_count++; jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", handle, nblocks, transaction->t_outstanding_credits, __jbd2_log_space_left(journal)); spin_unlock(&transaction->t_handle_lock); spin_unlock(&journal->j_state_lock);out: if (unlikely(new_transaction)) /* It's usually NULL */ kfree(new_transaction); return ret;}/* Allocate a new handle. This should probably be in a slab... */static handle_t *new_handle(int nblocks){ handle_t *handle = jbd2_alloc_handle(GFP_NOFS); if (!handle) return NULL; memset(handle, 0, sizeof(*handle)); handle->h_buffer_credits = nblocks; handle->h_ref = 1; return handle;}/** * handle_t *jbd2_journal_start() - Obtain a new handle. * @journal: Journal to start transaction on. * @nblocks: number of block buffer we might modify * * We make sure that the transaction can guarantee at least nblocks of * modified buffers in the log. We block until the log can guarantee * that much space. * * This function is visible to journal users (like ext3fs), so is not * called with the journal already locked. * * Return a pointer to a newly allocated handle, or NULL on failure */handle_t *jbd2_journal_start(journal_t *journal, int nblocks){ handle_t *handle = journal_current_handle(); int err; if (!journal) return ERR_PTR(-EROFS); if (handle) { J_ASSERT(handle->h_transaction->t_journal == journal); handle->h_ref++; return handle; } handle = new_handle(nblocks); if (!handle) return ERR_PTR(-ENOMEM); current->journal_info = handle; err = start_this_handle(journal, handle); if (err < 0) { jbd2_free_handle(handle); current->journal_info = NULL; handle = ERR_PTR(err); } return handle;}/** * int jbd2_journal_extend() - extend buffer credits. * @handle: handle to 'extend' * @nblocks: nr blocks to try to extend by. * * Some transactions, such as large extends and truncates, can be done * atomically all at once or in several stages. The operation requests * a credit for a number of buffer modications in advance, but can * extend its credit if it needs more. * * jbd2_journal_extend tries to give the running handle more buffer credits. * It does not guarantee that allocation - this is a best-effort only. * The calling process MUST be able to deal cleanly with a failure to * extend here. * * Return 0 on success, non-zero on failure. * * return code < 0 implies an error * return code > 0 implies normal transaction-full status. */int jbd2_journal_extend(handle_t *handle, int nblocks){ transaction_t *transaction = handle->h_transaction; journal_t *journal = transaction->t_journal; int result; int wanted; result = -EIO; if (is_handle_aborted(handle)) goto out; result = 1; spin_lock(&journal->j_state_lock); /* Don't extend a locked-down transaction! */ if (handle->h_transaction->t_state != T_RUNNING) { jbd_debug(3, "denied handle %p %d blocks: " "transaction not running\n", handle, nblocks); goto error_out; } spin_lock(&transaction->t_handle_lock); wanted = transaction->t_outstanding_credits + nblocks; if (wanted > journal->j_max_transaction_buffers) { jbd_debug(3, "denied handle %p %d blocks: " "transaction too large\n", handle, nblocks); goto unlock; } if (wanted > __jbd2_log_space_left(journal)) { jbd_debug(3, "denied handle %p %d blocks: " "insufficient log space\n", handle, nblocks); goto unlock; } handle->h_buffer_credits += nblocks; transaction->t_outstanding_credits += nblocks; result = 0; jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);unlock: spin_unlock(&transaction->t_handle_lock);error_out: spin_unlock(&journal->j_state_lock);out: return result;}/** * int jbd2_journal_restart() - restart a handle . * @handle: handle to restart * @nblocks: nr credits requested * * Restart a handle for a multi-transaction filesystem * operation. * * If the jbd2_journal_extend() call above fails to grant new buffer credits * to a running handle, a call to jbd2_journal_restart will commit the * handle's transaction so far and reattach the handle to a new * transaction capabable of guaranteeing the requested number of * credits. */int jbd2_journal_restart(handle_t *handle, int nblocks){ transaction_t *transaction = handle->h_transaction; journal_t *journal = transaction->t_journal; int ret; /* If we've had an abort of any type, don't even think about * actually doing the restart! */ if (is_handle_aborted(handle)) return 0; /* * First unlink the handle from its current transaction, and start the * commit on that. */ J_ASSERT(transaction->t_updates > 0); J_ASSERT(journal_current_handle() == handle); spin_lock(&journal->j_state_lock); spin_lock(&transaction->t_handle_lock); transaction->t_outstanding_credits -= handle->h_buffer_credits; transaction->t_updates--; if (!transaction->t_updates) wake_up(&journal->j_wait_updates); spin_unlock(&transaction->t_handle_lock); jbd_debug(2, "restarting handle %p\n", handle); __jbd2_log_start_commit(journal, transaction->t_tid); spin_unlock(&journal->j_state_lock); handle->h_buffer_credits = nblocks; ret = start_this_handle(journal, handle); return ret;}/** * void jbd2_journal_lock_updates () - establish a transaction barrier. * @journal: Journal to establish a barrier on. * * This locks out any further updates from being started, and blocks * until all existing updates have completed, returning only once the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -