📄 revoke.c
字号:
/* * linux/fs/jbd2/revoke.c * * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 * * Copyright 2000 Red Hat corp --- All Rights Reserved * * This file is part of the Linux kernel and is made available under * the terms of the GNU General Public License, version 2, or at your * option, any later version, incorporated herein by reference. * * Journal revoke routines for the generic filesystem journaling code; * part of the ext2fs journaling system. * * Revoke is the mechanism used to prevent old log records for deleted * metadata from being replayed on top of newer data using the same * blocks. The revoke mechanism is used in two separate places: * * + Commit: during commit we write the entire list of the current * transaction's revoked blocks to the journal * * + Recovery: during recovery we record the transaction ID of all * revoked blocks. If there are multiple revoke records in the log * for a single block, only the last one counts, and if there is a log * entry for a block beyond the last revoke, then that log entry still * gets replayed. * * We can get interactions between revokes and new log data within a * single transaction: * * Block is revoked and then journaled: * The desired end result is the journaling of the new block, so we * cancel the revoke before the transaction commits. * * Block is journaled and then revoked: * The revoke must take precedence over the write of the block, so we * need either to cancel the journal entry or to write the revoke * later in the log than the log block. In this case, we choose the * latter: journaling a block cancels any revoke record for that block * in the current transaction, so any revoke for that block in the * transaction must have happened after the block was journaled and so * the revoke must take precedence. * * Block is revoked and then written as data: * The data write is allowed to succeed, but the revoke is _not_ * cancelled. We still need to prevent old log records from * overwriting the new data. We don't even need to clear the revoke * bit here. * * Revoke information on buffers is a tri-state value: * * RevokeValid clear: no cached revoke status, need to look it up * RevokeValid set, Revoked clear: * buffer has not been revoked, and cancel_revoke * need do nothing. * RevokeValid set, Revoked set: * buffer has been revoked. */#ifndef __KERNEL__#include "jfs_user.h"#else#include <linux/time.h>#include <linux/fs.h>#include <linux/jbd2.h>#include <linux/errno.h>#include <linux/slab.h>#include <linux/list.h>#include <linux/init.h>#endif#include <linux/log2.h>static struct kmem_cache *jbd2_revoke_record_cache;static struct kmem_cache *jbd2_revoke_table_cache;/* Each revoke record represents one single revoked block. During journal replay, this involves recording the transaction ID of the last transaction to revoke this block. */struct jbd2_revoke_record_s{ struct list_head hash; tid_t sequence; /* Used for recovery only */ unsigned long long blocknr;};/* The revoke table is just a simple hash table of revoke records. */struct jbd2_revoke_table_s{ /* It is conceivable that we might want a larger hash table * for recovery. Must be a power of two. */ int hash_size; int hash_shift; struct list_head *hash_table;};#ifdef __KERNEL__static void write_one_revoke_record(journal_t *, transaction_t *, struct journal_head **, int *, struct jbd2_revoke_record_s *);static void flush_descriptor(journal_t *, struct journal_head *, int);#endif/* Utility functions to maintain the revoke table *//* Borrowed from buffer.c: this is a tried and tested block hash function */static inline int hash(journal_t *journal, unsigned long long block){ struct jbd2_revoke_table_s *table = journal->j_revoke; int hash_shift = table->hash_shift; int hash = (int)block ^ (int)((block >> 31) >> 1); return ((hash << (hash_shift - 6)) ^ (hash >> 13) ^ (hash << (hash_shift - 12))) & (table->hash_size - 1);}static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, tid_t seq){ struct list_head *hash_list; struct jbd2_revoke_record_s *record;repeat: record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS); if (!record) goto oom; record->sequence = seq; record->blocknr = blocknr; hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; spin_lock(&journal->j_revoke_lock); list_add(&record->hash, hash_list); spin_unlock(&journal->j_revoke_lock); return 0;oom: if (!journal_oom_retry) return -ENOMEM; jbd_debug(1, "ENOMEM in %s, retrying\n", __FUNCTION__); yield(); goto repeat;}/* Find a revoke record in the journal's hash table. */static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, unsigned long long blocknr){ struct list_head *hash_list; struct jbd2_revoke_record_s *record; hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; spin_lock(&journal->j_revoke_lock); record = (struct jbd2_revoke_record_s *) hash_list->next; while (&(record->hash) != hash_list) { if (record->blocknr == blocknr) { spin_unlock(&journal->j_revoke_lock); return record; } record = (struct jbd2_revoke_record_s *) record->hash.next; } spin_unlock(&journal->j_revoke_lock); return NULL;}int __init jbd2_journal_init_revoke_caches(void){ jbd2_revoke_record_cache = kmem_cache_create("jbd2_revoke_record", sizeof(struct jbd2_revoke_record_s), 0, SLAB_HWCACHE_ALIGN, NULL); if (jbd2_revoke_record_cache == 0) return -ENOMEM; jbd2_revoke_table_cache = kmem_cache_create("jbd2_revoke_table", sizeof(struct jbd2_revoke_table_s), 0, 0, NULL); if (jbd2_revoke_table_cache == 0) { kmem_cache_destroy(jbd2_revoke_record_cache); jbd2_revoke_record_cache = NULL; return -ENOMEM; } return 0;}void jbd2_journal_destroy_revoke_caches(void){ kmem_cache_destroy(jbd2_revoke_record_cache); jbd2_revoke_record_cache = NULL; kmem_cache_destroy(jbd2_revoke_table_cache); jbd2_revoke_table_cache = NULL;}/* Initialise the revoke table for a given journal to a given size. */int jbd2_journal_init_revoke(journal_t *journal, int hash_size){ int shift, tmp; J_ASSERT (journal->j_revoke_table[0] == NULL); shift = 0; tmp = hash_size; while((tmp >>= 1UL) != 0UL) shift++; journal->j_revoke_table[0] = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); if (!journal->j_revoke_table[0]) return -ENOMEM; journal->j_revoke = journal->j_revoke_table[0]; /* Check that the hash_size is a power of two */ J_ASSERT(is_power_of_2(hash_size)); journal->j_revoke->hash_size = hash_size; journal->j_revoke->hash_shift = shift; journal->j_revoke->hash_table = kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); if (!journal->j_revoke->hash_table) { kmem_cache_free(jbd2_revoke_table_cache, journal->j_revoke_table[0]); journal->j_revoke = NULL; return -ENOMEM; } for (tmp = 0; tmp < hash_size; tmp++) INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]); journal->j_revoke_table[1] = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); if (!journal->j_revoke_table[1]) { kfree(journal->j_revoke_table[0]->hash_table); kmem_cache_free(jbd2_revoke_table_cache, journal->j_revoke_table[0]); return -ENOMEM; } journal->j_revoke = journal->j_revoke_table[1]; /* Check that the hash_size is a power of two */ J_ASSERT(is_power_of_2(hash_size)); journal->j_revoke->hash_size = hash_size; journal->j_revoke->hash_shift = shift; journal->j_revoke->hash_table = kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); if (!journal->j_revoke->hash_table) { kfree(journal->j_revoke_table[0]->hash_table); kmem_cache_free(jbd2_revoke_table_cache, journal->j_revoke_table[0]); kmem_cache_free(jbd2_revoke_table_cache, journal->j_revoke_table[1]); journal->j_revoke = NULL; return -ENOMEM; } for (tmp = 0; tmp < hash_size; tmp++) INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]); spin_lock_init(&journal->j_revoke_lock); return 0;}/* Destoy a journal's revoke table. The table must already be empty! */void jbd2_journal_destroy_revoke(journal_t *journal){ struct jbd2_revoke_table_s *table; struct list_head *hash_list; int i; table = journal->j_revoke_table[0]; if (!table) return; for (i=0; i<table->hash_size; i++) { hash_list = &table->hash_table[i]; J_ASSERT (list_empty(hash_list)); } kfree(table->hash_table); kmem_cache_free(jbd2_revoke_table_cache, table); journal->j_revoke = NULL; table = journal->j_revoke_table[1]; if (!table) return; for (i=0; i<table->hash_size; i++) { hash_list = &table->hash_table[i]; J_ASSERT (list_empty(hash_list)); } kfree(table->hash_table); kmem_cache_free(jbd2_revoke_table_cache, table); journal->j_revoke = NULL;}#ifdef __KERNEL__/* * jbd2_journal_revoke: revoke a given buffer_head from the journal. This * prevents the block from being replayed during recovery if we take a * crash after this current transaction commits. Any subsequent * metadata writes of the buffer in this transaction cancel the * revoke. * * Note that this call may block --- it is up to the caller to make * sure that there are no further calls to journal_write_metadata * before the revoke is complete. In ext3, this implies calling the * revoke before clearing the block bitmap when we are deleting * metadata. * * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a * parameter, but does _not_ forget the buffer_head if the bh was only * found implicitly. * * bh_in may not be a journalled buffer - it may have come off * the hash tables without an attached journal_head. * * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count * by one. */int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, struct buffer_head *bh_in){ struct buffer_head *bh = NULL; journal_t *journal; struct block_device *bdev; int err; might_sleep(); if (bh_in) BUFFER_TRACE(bh_in, "enter"); journal = handle->h_transaction->t_journal; if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ J_ASSERT (!"Cannot set revoke feature!"); return -EINVAL; } bdev = journal->j_fs_dev; bh = bh_in; if (!bh) { bh = __find_get_block(bdev, blocknr, journal->j_blocksize); if (bh) BUFFER_TRACE(bh, "found on hash"); }#ifdef JBD2_EXPENSIVE_CHECKING else { struct buffer_head *bh2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -