📄 uptodate.c
字号:
} rb_link_node(&new->c_node, parent, p); rb_insert_color(&new->c_node, &ci->ci_cache.ci_tree); ci->ci_num_cached++;}static inline int ocfs2_insert_can_use_array(struct ocfs2_inode_info *oi, struct ocfs2_caching_info *ci){ assert_spin_locked(&oi->ip_lock); return (oi->ip_flags & OCFS2_INODE_CACHE_INLINE) && (ci->ci_num_cached < OCFS2_INODE_MAX_CACHE_ARRAY);}/* tree should be exactly OCFS2_INODE_MAX_CACHE_ARRAY wide. NULL the * pointers in tree after we use them - this allows caller to detect * when to free in case of error. */static void ocfs2_expand_cache(struct ocfs2_inode_info *oi, struct ocfs2_meta_cache_item **tree){ int i; struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; mlog_bug_on_msg(ci->ci_num_cached != OCFS2_INODE_MAX_CACHE_ARRAY, "Inode %llu, num cached = %u, should be %u\n", (unsigned long long)oi->ip_blkno, ci->ci_num_cached, OCFS2_INODE_MAX_CACHE_ARRAY); mlog_bug_on_msg(!(oi->ip_flags & OCFS2_INODE_CACHE_INLINE), "Inode %llu not marked as inline anymore!\n", (unsigned long long)oi->ip_blkno); assert_spin_locked(&oi->ip_lock); /* Be careful to initialize the tree members *first* because * once the ci_tree is used, the array is junk... */ for(i = 0; i < OCFS2_INODE_MAX_CACHE_ARRAY; i++) tree[i]->c_block = ci->ci_cache.ci_array[i]; oi->ip_flags &= ~OCFS2_INODE_CACHE_INLINE; ci->ci_cache.ci_tree = RB_ROOT; /* this will be set again by __ocfs2_insert_cache_tree */ ci->ci_num_cached = 0; for(i = 0; i < OCFS2_INODE_MAX_CACHE_ARRAY; i++) { __ocfs2_insert_cache_tree(ci, tree[i]); tree[i] = NULL; } mlog(0, "Expanded %llu to a tree cache: flags 0x%x, num = %u\n", (unsigned long long)oi->ip_blkno, oi->ip_flags, ci->ci_num_cached);}/* Slow path function - memory allocation is necessary. See the * comment above ocfs2_set_buffer_uptodate for more information. */static void __ocfs2_set_buffer_uptodate(struct ocfs2_inode_info *oi, sector_t block, int expand_tree){ int i; struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; struct ocfs2_meta_cache_item *new = NULL; struct ocfs2_meta_cache_item *tree[OCFS2_INODE_MAX_CACHE_ARRAY] = { NULL, }; mlog(0, "Inode %llu, block %llu, expand = %d\n", (unsigned long long)oi->ip_blkno, (unsigned long long)block, expand_tree); new = kmem_cache_alloc(ocfs2_uptodate_cachep, GFP_NOFS); if (!new) { mlog_errno(-ENOMEM); return; } new->c_block = block; if (expand_tree) { /* Do *not* allocate an array here - the removal code * has no way of tracking that. */ for(i = 0; i < OCFS2_INODE_MAX_CACHE_ARRAY; i++) { tree[i] = kmem_cache_alloc(ocfs2_uptodate_cachep, GFP_NOFS); if (!tree[i]) { mlog_errno(-ENOMEM); goto out_free; } /* These are initialized in ocfs2_expand_cache! */ } } spin_lock(&oi->ip_lock); if (ocfs2_insert_can_use_array(oi, ci)) { mlog(0, "Someone cleared the tree underneath us\n"); /* Ok, items were removed from the cache in between * locks. Detect this and revert back to the fast path */ ocfs2_append_cache_array(ci, block); spin_unlock(&oi->ip_lock); goto out_free; } if (expand_tree) ocfs2_expand_cache(oi, tree); __ocfs2_insert_cache_tree(ci, new); spin_unlock(&oi->ip_lock); new = NULL;out_free: if (new) kmem_cache_free(ocfs2_uptodate_cachep, new); /* If these were used, then ocfs2_expand_cache re-set them to * NULL for us. */ if (tree[0]) { for(i = 0; i < OCFS2_INODE_MAX_CACHE_ARRAY; i++) if (tree[i]) kmem_cache_free(ocfs2_uptodate_cachep, tree[i]); }}/* Item insertion is guarded by ip_io_mutex, so the insertion path takes * advantage of this by not rechecking for a duplicate insert during * the slow case. Additionally, if the cache needs to be bumped up to * a tree, the code will not recheck after acquiring the lock -- * multiple paths cannot be expanding to a tree at the same time. * * The slow path takes into account that items can be removed * (including the whole tree wiped and reset) when this process it out * allocating memory. In those cases, it reverts back to the fast * path. * * Note that this function may actually fail to insert the block if * memory cannot be allocated. This is not fatal however (but may * result in a performance penalty) * * Readahead buffers can be passed in here before the I/O request is * completed. */void ocfs2_set_buffer_uptodate(struct inode *inode, struct buffer_head *bh){ int expand; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; /* The block may very well exist in our cache already, so avoid * doing any more work in that case. */ if (ocfs2_buffer_cached(oi, bh)) return; mlog(0, "Inode %llu, inserting block %llu\n", (unsigned long long)oi->ip_blkno, (unsigned long long)bh->b_blocknr); /* No need to recheck under spinlock - insertion is guarded by * ip_io_mutex */ spin_lock(&oi->ip_lock); if (ocfs2_insert_can_use_array(oi, ci)) { /* Fast case - it's an array and there's a free * spot. */ ocfs2_append_cache_array(ci, bh->b_blocknr); spin_unlock(&oi->ip_lock); return; } expand = 0; if (oi->ip_flags & OCFS2_INODE_CACHE_INLINE) { /* We need to bump things up to a tree. */ expand = 1; } spin_unlock(&oi->ip_lock); __ocfs2_set_buffer_uptodate(oi, bh->b_blocknr, expand);}/* Called against a newly allocated buffer. Most likely nobody should * be able to read this sort of metadata while it's still being * allocated, but this is careful to take ip_io_mutex anyway. */void ocfs2_set_new_buffer_uptodate(struct inode *inode, struct buffer_head *bh){ struct ocfs2_inode_info *oi = OCFS2_I(inode); /* This should definitely *not* exist in our cache */ BUG_ON(ocfs2_buffer_cached(oi, bh)); set_buffer_uptodate(bh); mutex_lock(&oi->ip_io_mutex); ocfs2_set_buffer_uptodate(inode, bh); mutex_unlock(&oi->ip_io_mutex);}/* Requires ip_lock. */static void ocfs2_remove_metadata_array(struct ocfs2_caching_info *ci, int index){ sector_t *array = ci->ci_cache.ci_array; int bytes; BUG_ON(index < 0 || index >= OCFS2_INODE_MAX_CACHE_ARRAY); BUG_ON(index >= ci->ci_num_cached); BUG_ON(!ci->ci_num_cached); mlog(0, "remove index %d (num_cached = %u\n", index, ci->ci_num_cached); ci->ci_num_cached--; /* don't need to copy if the array is now empty, or if we * removed at the tail */ if (ci->ci_num_cached && index < ci->ci_num_cached) { bytes = sizeof(sector_t) * (ci->ci_num_cached - index); memmove(&array[index], &array[index + 1], bytes); }}/* Requires ip_lock. */static void ocfs2_remove_metadata_tree(struct ocfs2_caching_info *ci, struct ocfs2_meta_cache_item *item){ mlog(0, "remove block %llu from tree\n", (unsigned long long) item->c_block); rb_erase(&item->c_node, &ci->ci_cache.ci_tree); ci->ci_num_cached--;}/* Called when we remove a chunk of metadata from an inode. We don't * bother reverting things to an inlined array in the case of a remove * which moves us back under the limit. */void ocfs2_remove_from_cache(struct inode *inode, struct buffer_head *bh){ int index; sector_t block = bh->b_blocknr; struct ocfs2_meta_cache_item *item = NULL; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_caching_info *ci = &oi->ip_metadata_cache; spin_lock(&oi->ip_lock); mlog(0, "Inode %llu, remove %llu, items = %u, array = %u\n", (unsigned long long)oi->ip_blkno, (unsigned long long) block, ci->ci_num_cached, oi->ip_flags & OCFS2_INODE_CACHE_INLINE); if (oi->ip_flags & OCFS2_INODE_CACHE_INLINE) { index = ocfs2_search_cache_array(ci, block); if (index != -1) ocfs2_remove_metadata_array(ci, index); } else { item = ocfs2_search_cache_tree(ci, block); if (item) ocfs2_remove_metadata_tree(ci, item); } spin_unlock(&oi->ip_lock); if (item) kmem_cache_free(ocfs2_uptodate_cachep, item);}int __init init_ocfs2_uptodate_cache(void){ ocfs2_uptodate_cachep = kmem_cache_create("ocfs2_uptodate", sizeof(struct ocfs2_meta_cache_item), 0, SLAB_HWCACHE_ALIGN, NULL); if (!ocfs2_uptodate_cachep) return -ENOMEM; mlog(0, "%u inlined cache items per inode.\n", OCFS2_INODE_MAX_CACHE_ARRAY); return 0;}void exit_ocfs2_uptodate_cache(void){ if (ocfs2_uptodate_cachep) kmem_cache_destroy(ocfs2_uptodate_cachep);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -