📄 pcm_lib.c
字号:
/* * Digital Audio (PCM) abstract layer * Copyright (c) by Jaroslav Kysela <perex@perex.cz> * Abramo Bagnara <abramo@alsa-project.org> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */#include <sound/driver.h>#include <linux/slab.h>#include <linux/time.h>#include <sound/core.h>#include <sound/control.h>#include <sound/info.h>#include <sound/pcm.h>#include <sound/pcm_params.h>#include <sound/timer.h>/* * fill ring buffer with silence * runtime->silence_start: starting pointer to silence area * runtime->silence_filled: size filled with silence * runtime->silence_threshold: threshold from application * runtime->silence_size: maximal size from application * * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately */void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr){ struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_uframes_t frames, ofs, transfer; if (runtime->silence_size < runtime->boundary) { snd_pcm_sframes_t noise_dist, n; if (runtime->silence_start != runtime->control->appl_ptr) { n = runtime->control->appl_ptr - runtime->silence_start; if (n < 0) n += runtime->boundary; if ((snd_pcm_uframes_t)n < runtime->silence_filled) runtime->silence_filled -= n; else runtime->silence_filled = 0; runtime->silence_start = runtime->control->appl_ptr; } if (runtime->silence_filled >= runtime->buffer_size) return; noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) return; frames = runtime->silence_threshold - noise_dist; if (frames > runtime->silence_size) frames = runtime->silence_size; } else { if (new_hw_ptr == ULONG_MAX) { /* initialization */ snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); runtime->silence_filled = avail > 0 ? avail : 0; runtime->silence_start = (runtime->status->hw_ptr + runtime->silence_filled) % runtime->boundary; } else { ofs = runtime->status->hw_ptr; frames = new_hw_ptr - ofs; if ((snd_pcm_sframes_t)frames < 0) frames += runtime->boundary; runtime->silence_filled -= frames; if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { runtime->silence_filled = 0; runtime->silence_start = new_hw_ptr; } else { runtime->silence_start = ofs; } } frames = runtime->buffer_size - runtime->silence_filled; } snd_assert(frames <= runtime->buffer_size, return); if (frames == 0) return; ofs = runtime->silence_start % runtime->buffer_size; while (frames > 0) { transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { if (substream->ops->silence) { int err; err = substream->ops->silence(substream, -1, ofs, transfer); snd_assert(err >= 0, ); } else { char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); } } else { unsigned int c; unsigned int channels = runtime->channels; if (substream->ops->silence) { for (c = 0; c < channels; ++c) { int err; err = substream->ops->silence(substream, c, ofs, transfer); snd_assert(err >= 0, ); } } else { size_t dma_csize = runtime->dma_bytes / channels; for (c = 0; c < channels; ++c) { char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); } } } runtime->silence_filled += transfer; frames -= transfer; ofs = 0; }}static void xrun(struct snd_pcm_substream *substream){ snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);#ifdef CONFIG_SND_PCM_XRUN_DEBUG if (substream->pstr->xrun_debug) { snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n", substream->pcm->card->number, substream->pcm->device, substream->stream ? 'c' : 'p'); if (substream->pstr->xrun_debug > 1) dump_stack(); }#endif}static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream, struct snd_pcm_runtime *runtime){ snd_pcm_uframes_t pos; pos = substream->ops->pointer(substream); if (pos == SNDRV_PCM_POS_XRUN) return pos; /* XRUN */ if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP) getnstimeofday((struct timespec *)&runtime->status->tstamp);#ifdef CONFIG_SND_DEBUG if (pos >= runtime->buffer_size) { snd_printk(KERN_ERR "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size); }#endif pos -= pos % runtime->min_align; return pos;}static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream, struct snd_pcm_runtime *runtime){ snd_pcm_uframes_t avail; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) avail = snd_pcm_playback_avail(runtime); else avail = snd_pcm_capture_avail(runtime); if (avail > runtime->avail_max) runtime->avail_max = avail; if (avail >= runtime->stop_threshold) { if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING) snd_pcm_drain_done(substream); else xrun(substream); return -EPIPE; } if (avail >= runtime->control->avail_min) wake_up(&runtime->sleep); return 0;}static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream){ struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_uframes_t pos; snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt; snd_pcm_sframes_t delta; pos = snd_pcm_update_hw_ptr_pos(substream, runtime); if (pos == SNDRV_PCM_POS_XRUN) { xrun(substream); return -EPIPE; } if (runtime->period_size == runtime->buffer_size) goto __next_buf; new_hw_ptr = runtime->hw_ptr_base + pos; hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size; delta = hw_ptr_interrupt - new_hw_ptr; if (delta > 0) { if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {#ifdef CONFIG_SND_PCM_XRUN_DEBUG if (runtime->periods > 1 && substream->pstr->xrun_debug) { snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); if (substream->pstr->xrun_debug > 1) dump_stack(); }#endif return 0; } __next_buf: runtime->hw_ptr_base += runtime->buffer_size; if (runtime->hw_ptr_base == runtime->boundary) runtime->hw_ptr_base = 0; new_hw_ptr = runtime->hw_ptr_base + pos; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && runtime->silence_size > 0) snd_pcm_playback_silence(substream, new_hw_ptr); runtime->status->hw_ptr = new_hw_ptr; runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size; return snd_pcm_update_hw_ptr_post(substream, runtime);}/* CAUTION: call it with irq disabled */int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream){ struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_uframes_t pos; snd_pcm_uframes_t old_hw_ptr, new_hw_ptr; snd_pcm_sframes_t delta; old_hw_ptr = runtime->status->hw_ptr; pos = snd_pcm_update_hw_ptr_pos(substream, runtime); if (pos == SNDRV_PCM_POS_XRUN) { xrun(substream); return -EPIPE; } new_hw_ptr = runtime->hw_ptr_base + pos; delta = old_hw_ptr - new_hw_ptr; if (delta > 0) { if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {#ifdef CONFIG_SND_PCM_XRUN_DEBUG if (runtime->periods > 2 && substream->pstr->xrun_debug) { snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); if (substream->pstr->xrun_debug > 1) dump_stack(); }#endif return 0; } runtime->hw_ptr_base += runtime->buffer_size; if (runtime->hw_ptr_base == runtime->boundary) runtime->hw_ptr_base = 0; new_hw_ptr = runtime->hw_ptr_base + pos; } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && runtime->silence_size > 0) snd_pcm_playback_silence(substream, new_hw_ptr); runtime->status->hw_ptr = new_hw_ptr; return snd_pcm_update_hw_ptr_post(substream, runtime);}/** * snd_pcm_set_ops - set the PCM operators * @pcm: the pcm instance * @direction: stream direction, SNDRV_PCM_STREAM_XXX * @ops: the operator table * * Sets the given PCM operators to the pcm instance. */void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops){ struct snd_pcm_str *stream = &pcm->streams[direction]; struct snd_pcm_substream *substream; for (substream = stream->substream; substream != NULL; substream = substream->next) substream->ops = ops;}EXPORT_SYMBOL(snd_pcm_set_ops);/** * snd_pcm_sync - set the PCM sync id * @substream: the pcm substream * * Sets the PCM sync identifier for the card. */void snd_pcm_set_sync(struct snd_pcm_substream *substream){ struct snd_pcm_runtime *runtime = substream->runtime; runtime->sync.id32[0] = substream->pcm->card->number; runtime->sync.id32[1] = -1; runtime->sync.id32[2] = -1; runtime->sync.id32[3] = -1;}EXPORT_SYMBOL(snd_pcm_set_sync);/* * Standard ioctl routine */static inline unsigned int div32(unsigned int a, unsigned int b, unsigned int *r){ if (b == 0) { *r = 0; return UINT_MAX; } *r = a % b; return a / b;}static inline unsigned int div_down(unsigned int a, unsigned int b){ if (b == 0) return UINT_MAX; return a / b;}static inline unsigned int div_up(unsigned int a, unsigned int b){ unsigned int r; unsigned int q; if (b == 0) return UINT_MAX; q = div32(a, b, &r); if (r) ++q; return q;}static inline unsigned int mul(unsigned int a, unsigned int b){ if (a == 0) return 0; if (div_down(UINT_MAX, a) < b) return UINT_MAX; return a * b;}static inline unsigned int muldiv32(unsigned int a, unsigned int b, unsigned int c, unsigned int *r){ u_int64_t n = (u_int64_t) a * b; if (c == 0) { snd_assert(n > 0, ); *r = 0; return UINT_MAX; } div64_32(&n, c, r); if (n >= UINT_MAX) { *r = 0; return UINT_MAX; } return n;}/** * snd_interval_refine - refine the interval value of configurator * @i: the interval value to refine * @v: the interval value to refer to * * Refines the interval value with the reference value. * The interval is changed to the range satisfying both intervals. * The interval status (min, max, integer, etc.) are evaluated. * * Returns non-zero if the value is changed, zero if not changed. */int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v){ int changed = 0; snd_assert(!snd_interval_empty(i), return -EINVAL); if (i->min < v->min) { i->min = v->min; i->openmin = v->openmin; changed = 1; } else if (i->min == v->min && !i->openmin && v->openmin) { i->openmin = 1; changed = 1; } if (i->max > v->max) { i->max = v->max; i->openmax = v->openmax; changed = 1; } else if (i->max == v->max && !i->openmax && v->openmax) { i->openmax = 1; changed = 1; } if (!i->integer && v->integer) { i->integer = 1; changed = 1; } if (i->integer) { if (i->openmin) { i->min++; i->openmin = 0; } if (i->openmax) { i->max--; i->openmax = 0; } } else if (!i->openmin && !i->openmax && i->min == i->max) i->integer = 1; if (snd_interval_checkempty(i)) { snd_interval_none(i); return -EINVAL; } return changed;}EXPORT_SYMBOL(snd_interval_refine);static int snd_interval_refine_first(struct snd_interval *i){ snd_assert(!snd_interval_empty(i), return -EINVAL); if (snd_interval_single(i)) return 0; i->max = i->min; i->openmax = i->openmin; if (i->openmax) i->max++; return 1;}static int snd_interval_refine_last(struct snd_interval *i){ snd_assert(!snd_interval_empty(i), return -EINVAL); if (snd_interval_single(i)) return 0; i->min = i->max; i->openmin = i->openmax; if (i->openmin) i->min--; return 1;}void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c){ if (a->empty || b->empty) { snd_interval_none(c); return; } c->empty = 0; c->min = mul(a->min, b->min); c->openmin = (a->openmin || b->openmin); c->max = mul(a->max, b->max); c->openmax = (a->openmax || b->openmax); c->integer = (a->integer && b->integer);}/** * snd_interval_div - refine the interval value with division * @a: dividend * @b: divisor * @c: quotient * * c = a / b * * Returns non-zero if the value is changed, zero if not changed. */void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c){ unsigned int r; if (a->empty || b->empty) { snd_interval_none(c); return; } c->empty = 0; c->min = div32(a->min, b->max, &r); c->openmin = (r || a->openmin || b->openmax); if (b->min > 0) { c->max = div32(a->max, b->min, &r); if (r) { c->max++; c->openmax = 1; } else c->openmax = (a->openmax || b->openmin); } else { c->max = UINT_MAX; c->openmax = 0; } c->integer = 0;}/** * snd_interval_muldivk - refine the interval value * @a: dividend 1 * @b: dividend 2 * @k: divisor (as integer) * @c: result * * c = a * b / k * * Returns non-zero if the value is changed, zero if not changed. */void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, unsigned int k, struct snd_interval *c){ unsigned int r; if (a->empty || b->empty) { snd_interval_none(c); return; } c->empty = 0; c->min = muldiv32(a->min, b->min, k, &r); c->openmin = (r || a->openmin || b->openmin); c->max = muldiv32(a->max, b->max, k, &r); if (r) { c->max++; c->openmax = 1; } else c->openmax = (a->openmax || b->openmax); c->integer = 0;}/** * snd_interval_mulkdiv - refine the interval value * @a: dividend 1 * @k: dividend 2 (as integer) * @b: divisor * @c: result
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -