📄 emu10k1_main.c
字号:
} }#endif snd_emu10k1_intr_enable(emu, INTE_PCIERRORENABLE);}int snd_emu10k1_done(struct snd_emu10k1 * emu){ int ch; outl(0, emu->port + INTE); /* * Shutdown the chip */ for (ch = 0; ch < NUM_G; ch++) snd_emu10k1_ptr_write(emu, DCYSUSV, ch, 0); for (ch = 0; ch < NUM_G; ch++) { snd_emu10k1_ptr_write(emu, VTFT, ch, 0); snd_emu10k1_ptr_write(emu, CVCF, ch, 0); snd_emu10k1_ptr_write(emu, PTRX, ch, 0); snd_emu10k1_ptr_write(emu, CPF, ch, 0); } /* reset recording buffers */ snd_emu10k1_ptr_write(emu, MICBS, 0, 0); snd_emu10k1_ptr_write(emu, MICBA, 0, 0); snd_emu10k1_ptr_write(emu, FXBS, 0, 0); snd_emu10k1_ptr_write(emu, FXBA, 0, 0); snd_emu10k1_ptr_write(emu, FXWC, 0, 0); snd_emu10k1_ptr_write(emu, ADCBS, 0, ADCBS_BUFSIZE_NONE); snd_emu10k1_ptr_write(emu, ADCBA, 0, 0); snd_emu10k1_ptr_write(emu, TCBS, 0, TCBS_BUFFSIZE_16K); snd_emu10k1_ptr_write(emu, TCB, 0, 0); if (emu->audigy) snd_emu10k1_ptr_write(emu, A_DBG, 0, A_DBG_SINGLE_STEP); else snd_emu10k1_ptr_write(emu, DBG, 0, EMU10K1_DBG_SINGLE_STEP); /* disable channel interrupt */ snd_emu10k1_ptr_write(emu, CLIEL, 0, 0); snd_emu10k1_ptr_write(emu, CLIEH, 0, 0); snd_emu10k1_ptr_write(emu, SOLEL, 0, 0); snd_emu10k1_ptr_write(emu, SOLEH, 0, 0); /* disable audio and lock cache */ outl(HCFG_LOCKSOUNDCACHE | HCFG_LOCKTANKCACHE_MASK | HCFG_MUTEBUTTONENABLE, emu->port + HCFG); snd_emu10k1_ptr_write(emu, PTB, 0, 0); return 0;}/************************************************************************* * ECARD functional implementation *************************************************************************//* In A1 Silicon, these bits are in the HC register */#define HOOKN_BIT (1L << 12)#define HANDN_BIT (1L << 11)#define PULSEN_BIT (1L << 10)#define EC_GDI1 (1 << 13)#define EC_GDI0 (1 << 14)#define EC_NUM_CONTROL_BITS 20#define EC_AC3_DATA_SELN 0x0001L#define EC_EE_DATA_SEL 0x0002L#define EC_EE_CNTRL_SELN 0x0004L#define EC_EECLK 0x0008L#define EC_EECS 0x0010L#define EC_EESDO 0x0020L#define EC_TRIM_CSN 0x0040L#define EC_TRIM_SCLK 0x0080L#define EC_TRIM_SDATA 0x0100L#define EC_TRIM_MUTEN 0x0200L#define EC_ADCCAL 0x0400L#define EC_ADCRSTN 0x0800L#define EC_DACCAL 0x1000L#define EC_DACMUTEN 0x2000L#define EC_LEDN 0x4000L#define EC_SPDIF0_SEL_SHIFT 15#define EC_SPDIF1_SEL_SHIFT 17#define EC_SPDIF0_SEL_MASK (0x3L << EC_SPDIF0_SEL_SHIFT)#define EC_SPDIF1_SEL_MASK (0x7L << EC_SPDIF1_SEL_SHIFT)#define EC_SPDIF0_SELECT(_x) (((_x) << EC_SPDIF0_SEL_SHIFT) & EC_SPDIF0_SEL_MASK)#define EC_SPDIF1_SELECT(_x) (((_x) << EC_SPDIF1_SEL_SHIFT) & EC_SPDIF1_SEL_MASK)#define EC_CURRENT_PROM_VERSION 0x01 /* Self-explanatory. This should * be incremented any time the EEPROM's * format is changed. */#define EC_EEPROM_SIZE 0x40 /* ECARD EEPROM has 64 16-bit words *//* Addresses for special values stored in to EEPROM */#define EC_PROM_VERSION_ADDR 0x20 /* Address of the current prom version */#define EC_BOARDREV0_ADDR 0x21 /* LSW of board rev */#define EC_BOARDREV1_ADDR 0x22 /* MSW of board rev */#define EC_LAST_PROMFILE_ADDR 0x2f#define EC_SERIALNUM_ADDR 0x30 /* First word of serial number. The * can be up to 30 characters in length * and is stored as a NULL-terminated * ASCII string. Any unused bytes must be * filled with zeros */#define EC_CHECKSUM_ADDR 0x3f /* Location at which checksum is stored *//* Most of this stuff is pretty self-evident. According to the hardware * dudes, we need to leave the ADCCAL bit low in order to avoid a DC * offset problem. Weird. */#define EC_RAW_RUN_MODE (EC_DACMUTEN | EC_ADCRSTN | EC_TRIM_MUTEN | \ EC_TRIM_CSN)#define EC_DEFAULT_ADC_GAIN 0xC4C4#define EC_DEFAULT_SPDIF0_SEL 0x0#define EC_DEFAULT_SPDIF1_SEL 0x4/************************************************************************** * @func Clock bits into the Ecard's control latch. The Ecard uses a * control latch will is loaded bit-serially by toggling the Modem control * lines from function 2 on the E8010. This function hides these details * and presents the illusion that we are actually writing to a distinct * register. */static void snd_emu10k1_ecard_write(struct snd_emu10k1 * emu, unsigned int value){ unsigned short count; unsigned int data; unsigned long hc_port; unsigned int hc_value; hc_port = emu->port + HCFG; hc_value = inl(hc_port) & ~(HOOKN_BIT | HANDN_BIT | PULSEN_BIT); outl(hc_value, hc_port); for (count = 0; count < EC_NUM_CONTROL_BITS; count++) { /* Set up the value */ data = ((value & 0x1) ? PULSEN_BIT : 0); value >>= 1; outl(hc_value | data, hc_port); /* Clock the shift register */ outl(hc_value | data | HANDN_BIT, hc_port); outl(hc_value | data, hc_port); } /* Latch the bits */ outl(hc_value | HOOKN_BIT, hc_port); outl(hc_value, hc_port);}/************************************************************************** * @func Set the gain of the ECARD's CS3310 Trim/gain controller. The * trim value consists of a 16bit value which is composed of two * 8 bit gain/trim values, one for the left channel and one for the * right channel. The following table maps from the Gain/Attenuation * value in decibels into the corresponding bit pattern for a single * channel. */static void snd_emu10k1_ecard_setadcgain(struct snd_emu10k1 * emu, unsigned short gain){ unsigned int bit; /* Enable writing to the TRIM registers */ snd_emu10k1_ecard_write(emu, emu->ecard_ctrl & ~EC_TRIM_CSN); /* Do it again to insure that we meet hold time requirements */ snd_emu10k1_ecard_write(emu, emu->ecard_ctrl & ~EC_TRIM_CSN); for (bit = (1 << 15); bit; bit >>= 1) { unsigned int value; value = emu->ecard_ctrl & ~(EC_TRIM_CSN | EC_TRIM_SDATA); if (gain & bit) value |= EC_TRIM_SDATA; /* Clock the bit */ snd_emu10k1_ecard_write(emu, value); snd_emu10k1_ecard_write(emu, value | EC_TRIM_SCLK); snd_emu10k1_ecard_write(emu, value); } snd_emu10k1_ecard_write(emu, emu->ecard_ctrl);}static int snd_emu10k1_ecard_init(struct snd_emu10k1 * emu){ unsigned int hc_value; /* Set up the initial settings */ emu->ecard_ctrl = EC_RAW_RUN_MODE | EC_SPDIF0_SELECT(EC_DEFAULT_SPDIF0_SEL) | EC_SPDIF1_SELECT(EC_DEFAULT_SPDIF1_SEL); /* Step 0: Set the codec type in the hardware control register * and enable audio output */ hc_value = inl(emu->port + HCFG); outl(hc_value | HCFG_AUDIOENABLE | HCFG_CODECFORMAT_I2S, emu->port + HCFG); inl(emu->port + HCFG); /* Step 1: Turn off the led and deassert TRIM_CS */ snd_emu10k1_ecard_write(emu, EC_ADCCAL | EC_LEDN | EC_TRIM_CSN); /* Step 2: Calibrate the ADC and DAC */ snd_emu10k1_ecard_write(emu, EC_DACCAL | EC_LEDN | EC_TRIM_CSN); /* Step 3: Wait for awhile; XXX We can't get away with this * under a real operating system; we'll need to block and wait that * way. */ snd_emu10k1_wait(emu, 48000); /* Step 4: Switch off the DAC and ADC calibration. Note * That ADC_CAL is actually an inverted signal, so we assert * it here to stop calibration. */ snd_emu10k1_ecard_write(emu, EC_ADCCAL | EC_LEDN | EC_TRIM_CSN); /* Step 4: Switch into run mode */ snd_emu10k1_ecard_write(emu, emu->ecard_ctrl); /* Step 5: Set the analog input gain */ snd_emu10k1_ecard_setadcgain(emu, EC_DEFAULT_ADC_GAIN); return 0;}static int snd_emu10k1_cardbus_init(struct snd_emu10k1 * emu){ unsigned long special_port; unsigned int value; /* Special initialisation routine * before the rest of the IO-Ports become active. */ special_port = emu->port + 0x38; value = inl(special_port); outl(0x00d00000, special_port); value = inl(special_port); outl(0x00d00001, special_port); value = inl(special_port); outl(0x00d0005f, special_port); value = inl(special_port); outl(0x00d0007f, special_port); value = inl(special_port); outl(0x0090007f, special_port); value = inl(special_port); snd_emu10k1_ptr20_write(emu, TINA2_VOLUME, 0, 0xfefefefe); /* Defaults to 0x30303030 */ return 0;}static int snd_emu1010_load_firmware(struct snd_emu10k1 * emu, const char * filename){ int err; int n, i; int reg; int value; const struct firmware *fw_entry; if ((err = request_firmware(&fw_entry, filename, &emu->pci->dev)) != 0) { snd_printk(KERN_ERR "firmware: %s not found. Err=%d\n",filename, err); return err; } snd_printk(KERN_INFO "firmware size=0x%zx\n", fw_entry->size);#if 0 if (fw_entry->size != 0x133a4) { snd_printk(KERN_ERR "firmware: %s wrong size.\n",filename); return -EINVAL; }#endif /* The FPGA is a Xilinx Spartan IIE XC2S50E */ /* GPIO7 -> FPGA PGMN * GPIO6 -> FPGA CCLK * GPIO5 -> FPGA DIN * FPGA CONFIG OFF -> FPGA PGMN */ outl(0x00, emu->port + A_IOCFG); /* Set PGMN low for 1uS. */ udelay(1); outl(0x80, emu->port + A_IOCFG); /* Leave bit 7 set during netlist setup. */ udelay(100); /* Allow FPGA memory to clean */ for(n = 0; n < fw_entry->size; n++) { value=fw_entry->data[n]; for(i = 0; i < 8; i++) { reg = 0x80; if (value & 0x1) reg = reg | 0x20; value = value >> 1; outl(reg, emu->port + A_IOCFG); outl(reg | 0x40, emu->port + A_IOCFG); } } /* After programming, set GPIO bit 4 high again. */ outl(0x10, emu->port + A_IOCFG); release_firmware(fw_entry); return 0;}int emu1010_firmware_thread(void *data) { struct snd_emu10k1 * emu = data; int tmp,tmp2; int reg; int err; for (;;) { /* Delay to allow Audio Dock to settle */ msleep(1000); if (kthread_should_stop()) break; snd_emu1010_fpga_read(emu, EMU_HANA_IRQ_STATUS, &tmp ); /* IRQ Status */ snd_emu1010_fpga_read(emu, EMU_HANA_OPTION_CARDS, ® ); /* OPTIONS: Which cards are attached to the EMU */ if (reg & EMU_HANA_OPTION_DOCK_OFFLINE) { /* Audio Dock attached */ /* Return to Audio Dock programming mode */ snd_printk(KERN_INFO "emu1010: Loading Audio Dock Firmware\n"); snd_emu1010_fpga_write(emu, EMU_HANA_FPGA_CONFIG, EMU_HANA_FPGA_CONFIG_AUDIODOCK ); if (emu->card_capabilities->emu1010 == 1) { if ((err = snd_emu1010_load_firmware(emu, DOCK_FILENAME)) != 0) { return err; } } else if (emu->card_capabilities->emu1010 == 2) { if ((err = snd_emu1010_load_firmware(emu, MICRO_DOCK_FILENAME)) != 0) { return err; } } else if (emu->card_capabilities->emu1010 == 3) { if ((err = snd_emu1010_load_firmware(emu, MICRO_DOCK_FILENAME)) != 0) { return err; } } snd_emu1010_fpga_write(emu, EMU_HANA_FPGA_CONFIG, 0 ); snd_emu1010_fpga_read(emu, EMU_HANA_IRQ_STATUS, ® ); snd_printk(KERN_INFO "emu1010: EMU_HANA+DOCK_IRQ_STATUS=0x%x\n",reg); /* ID, should read & 0x7f = 0x55 when FPGA programmed. */ snd_emu1010_fpga_read(emu, EMU_HANA_ID, ® ); snd_printk(KERN_INFO "emu1010: EMU_HANA+DOCK_ID=0x%x\n",reg); if ((reg & 0x1f) != 0x15) { /* FPGA failed to be programmed */ snd_printk(KERN_INFO "emu1010: Loading Audio Dock Firmware file failed, reg=0x%x\n", reg); return 0; return -ENODEV; } snd_printk(KERN_INFO "emu1010: Audio Dock Firmware loaded\n"); snd_emu1010_fpga_read(emu, EMU_DOCK_MAJOR_REV, &tmp ); snd_emu1010_fpga_read(emu, EMU_DOCK_MINOR_REV, &tmp2 ); snd_printk("Audio Dock ver:%d.%d\n",tmp ,tmp2); /* Sync clocking between 1010 and Dock */ /* Allow DLL to settle */ msleep(10); /* Unmute all. Default is muted after a firmware load */ snd_emu1010_fpga_write(emu, EMU_HANA_UNMUTE, EMU_UNMUTE ); break; } } return 0;}/* * EMU-1010 - details found out from this driver, official MS Win drivers, * testing the card: * * Audigy2 (aka Alice2): * --------------------- * * communication over PCI * * conversion of 32-bit data coming over EMU32 links from HANA FPGA * to 2 x 16-bit, using internal DSP instructions * * slave mode, clock supplied by HANA * * linked to HANA using: * 32 x 32-bit serial EMU32 output channels * 16 x EMU32 input channels * (?) x I2S I/O channels (?) * * FPGA (aka HANA): * --------------- * * provides all (?) physical inputs and outputs of the card * (ADC, DAC, SPDIF I/O, ADAT I/O, etc.) * * provides clock signal for the card and Alice2 * * two crystals - for 44.1kHz and 48kHz multiples * * provides internal routing of signal sources to signal destinations * * inputs/outputs to Alice2 - see above * * Current status of the driver: * ---------------------------- * * only 44.1/48kHz supported (the MS Win driver supports up to 192 kHz)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -