📄 pgtable_32.h
字号:
#ifndef _I386_PGTABLE_H#define _I386_PGTABLE_H/* * The Linux memory management assumes a three-level page table setup. On * the i386, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * i386 mmu expects. * * This file contains the functions and defines necessary to modify and use * the i386 page table tree. */#ifndef __ASSEMBLY__#include <asm/processor.h>#include <asm/fixmap.h>#include <linux/threads.h>#include <asm/paravirt.h>#include <linux/bitops.h>#include <linux/slab.h>#include <linux/list.h>#include <linux/spinlock.h>struct mm_struct;struct vm_area_struct;/* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))extern unsigned long empty_zero_page[1024];extern pgd_t swapper_pg_dir[1024];extern struct kmem_cache *pmd_cache;extern spinlock_t pgd_lock;extern struct page *pgd_list;void check_pgt_cache(void);void pmd_ctor(struct kmem_cache *, void *);void pgtable_cache_init(void);void paging_init(void);/* * The Linux x86 paging architecture is 'compile-time dual-mode', it * implements both the traditional 2-level x86 page tables and the * newer 3-level PAE-mode page tables. */#ifdef CONFIG_X86_PAE# include <asm/pgtable-3level-defs.h># define PMD_SIZE (1UL << PMD_SHIFT)# define PMD_MASK (~(PMD_SIZE-1))#else# include <asm/pgtable-2level-defs.h>#endif#define PGDIR_SIZE (1UL << PGDIR_SHIFT)#define PGDIR_MASK (~(PGDIR_SIZE-1))#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)#define FIRST_USER_ADDRESS 0#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)#define TWOLEVEL_PGDIR_SHIFT 22#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)/* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_OFFSET (8*1024*1024)#define VMALLOC_START (((unsigned long) high_memory + \ 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))#ifdef CONFIG_HIGHMEM# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)#else# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)#endif/* * _PAGE_PSE set in the page directory entry just means that * the page directory entry points directly to a 4MB-aligned block of * memory. */#define _PAGE_BIT_PRESENT 0#define _PAGE_BIT_RW 1#define _PAGE_BIT_USER 2#define _PAGE_BIT_PWT 3#define _PAGE_BIT_PCD 4#define _PAGE_BIT_ACCESSED 5#define _PAGE_BIT_DIRTY 6#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */#define _PAGE_BIT_UNUSED1 9 /* available for programmer */#define _PAGE_BIT_UNUSED2 10#define _PAGE_BIT_UNUSED3 11#define _PAGE_BIT_NX 63#define _PAGE_PRESENT 0x001#define _PAGE_RW 0x002#define _PAGE_USER 0x004#define _PAGE_PWT 0x008#define _PAGE_PCD 0x010#define _PAGE_ACCESSED 0x020#define _PAGE_DIRTY 0x040#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */#define _PAGE_UNUSED1 0x200 /* available for programmer */#define _PAGE_UNUSED2 0x400#define _PAGE_UNUSED3 0x800/* If _PAGE_PRESENT is clear, we use these: */#define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */#define _PAGE_PROTNONE 0x080 /* if the user mapped it with PROT_NONE; pte_present gives true */#ifdef CONFIG_X86_PAE#define _PAGE_NX (1ULL<<_PAGE_BIT_NX)#else#define _PAGE_NX 0#endif#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)#define PAGE_NONE \ __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)#define PAGE_SHARED \ __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_SHARED_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_COPY_NOEXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)#define PAGE_COPY_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_COPY \ PAGE_COPY_NOEXEC#define PAGE_READONLY \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)#define PAGE_READONLY_EXEC \ __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define _PAGE_KERNEL \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)#define _PAGE_KERNEL_EXEC \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)#define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW)#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)#define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX)#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)/* * The i386 can't do page protection for execute, and considers that * the same are read. Also, write permissions imply read permissions. * This is the closest we can get.. */#define __P000 PAGE_NONE#define __P001 PAGE_READONLY#define __P010 PAGE_COPY#define __P011 PAGE_COPY#define __P100 PAGE_READONLY_EXEC#define __P101 PAGE_READONLY_EXEC#define __P110 PAGE_COPY_EXEC#define __P111 PAGE_COPY_EXEC#define __S000 PAGE_NONE#define __S001 PAGE_READONLY#define __S010 PAGE_SHARED#define __S011 PAGE_SHARED#define __S100 PAGE_READONLY_EXEC#define __S101 PAGE_READONLY_EXEC#define __S110 PAGE_SHARED_EXEC#define __S111 PAGE_SHARED_EXEC/* * Define this if things work differently on an i386 and an i486: * it will (on an i486) warn about kernel memory accesses that are * done without a 'access_ok(VERIFY_WRITE,..)' */#undef TEST_ACCESS_OK/* The boot page tables (all created as a single array) */extern unsigned long pg0[];#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */#define pmd_none(x) (!(unsigned long)pmd_val(x))#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }static inline int pte_huge(pte_t pte) { return (pte).pte_low & _PAGE_PSE; }/* * The following only works if pte_present() is not true. */static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }static inline pte_t pte_mkhuge(pte_t pte) { (pte).pte_low |= _PAGE_PSE; return pte; }#ifdef CONFIG_X86_PAE# include <asm/pgtable-3level.h>#else# include <asm/pgtable-2level.h>#endif#ifndef CONFIG_PARAVIRT/* * Rules for using pte_update - it must be called after any PTE update which * has not been done using the set_pte / clear_pte interfaces. It is used by * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE * updates should either be sets, clears, or set_pte_atomic for P->P * transitions, which means this hook should only be called for user PTEs. * This hook implies a P->P protection or access change has taken place, which * requires a subsequent TLB flush. The notification can optionally be delayed * until the TLB flush event by using the pte_update_defer form of the * interface, but care must be taken to assure that the flush happens while * still holding the same page table lock so that the shadow and primary pages * do not become out of sync on SMP. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -