⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgtable_32.h

📁 linux 内核源代码
💻 H
📖 第 1 页 / 共 2 页
字号:
#ifndef _I386_PGTABLE_H#define _I386_PGTABLE_H/* * The Linux memory management assumes a three-level page table setup. On * the i386, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * i386 mmu expects. * * This file contains the functions and defines necessary to modify and use * the i386 page table tree. */#ifndef __ASSEMBLY__#include <asm/processor.h>#include <asm/fixmap.h>#include <linux/threads.h>#include <asm/paravirt.h>#include <linux/bitops.h>#include <linux/slab.h>#include <linux/list.h>#include <linux/spinlock.h>struct mm_struct;struct vm_area_struct;/* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))extern unsigned long empty_zero_page[1024];extern pgd_t swapper_pg_dir[1024];extern struct kmem_cache *pmd_cache;extern spinlock_t pgd_lock;extern struct page *pgd_list;void check_pgt_cache(void);void pmd_ctor(struct kmem_cache *, void *);void pgtable_cache_init(void);void paging_init(void);/* * The Linux x86 paging architecture is 'compile-time dual-mode', it * implements both the traditional 2-level x86 page tables and the * newer 3-level PAE-mode page tables. */#ifdef CONFIG_X86_PAE# include <asm/pgtable-3level-defs.h># define PMD_SIZE	(1UL << PMD_SHIFT)# define PMD_MASK	(~(PMD_SIZE-1))#else# include <asm/pgtable-2level-defs.h>#endif#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)#define PGDIR_MASK	(~(PGDIR_SIZE-1))#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)#define FIRST_USER_ADDRESS	0#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)#define TWOLEVEL_PGDIR_SHIFT	22#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)/* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts.  That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_OFFSET	(8*1024*1024)#define VMALLOC_START	(((unsigned long) high_memory + \			2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))#ifdef CONFIG_HIGHMEM# define VMALLOC_END	(PKMAP_BASE-2*PAGE_SIZE)#else# define VMALLOC_END	(FIXADDR_START-2*PAGE_SIZE)#endif/* * _PAGE_PSE set in the page directory entry just means that * the page directory entry points directly to a 4MB-aligned block of * memory.  */#define _PAGE_BIT_PRESENT	0#define _PAGE_BIT_RW		1#define _PAGE_BIT_USER		2#define _PAGE_BIT_PWT		3#define _PAGE_BIT_PCD		4#define _PAGE_BIT_ACCESSED	5#define _PAGE_BIT_DIRTY		6#define _PAGE_BIT_PSE		7	/* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_BIT_GLOBAL	8	/* Global TLB entry PPro+ */#define _PAGE_BIT_UNUSED1	9	/* available for programmer */#define _PAGE_BIT_UNUSED2	10#define _PAGE_BIT_UNUSED3	11#define _PAGE_BIT_NX		63#define _PAGE_PRESENT	0x001#define _PAGE_RW	0x002#define _PAGE_USER	0x004#define _PAGE_PWT	0x008#define _PAGE_PCD	0x010#define _PAGE_ACCESSED	0x020#define _PAGE_DIRTY	0x040#define _PAGE_PSE	0x080	/* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_GLOBAL	0x100	/* Global TLB entry PPro+ */#define _PAGE_UNUSED1	0x200	/* available for programmer */#define _PAGE_UNUSED2	0x400#define _PAGE_UNUSED3	0x800/* If _PAGE_PRESENT is clear, we use these: */#define _PAGE_FILE	0x040	/* nonlinear file mapping, saved PTE; unset:swap */#define _PAGE_PROTNONE	0x080	/* if the user mapped it with PROT_NONE;				   pte_present gives true */#ifdef CONFIG_X86_PAE#define _PAGE_NX	(1ULL<<_PAGE_BIT_NX)#else#define _PAGE_NX	0#endif#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)#define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)#define PAGE_NONE \	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)#define PAGE_SHARED \	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_SHARED_EXEC \	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_COPY_NOEXEC \	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)#define PAGE_COPY_EXEC \	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_COPY \	PAGE_COPY_NOEXEC#define PAGE_READONLY \	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)#define PAGE_READONLY_EXEC \	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define _PAGE_KERNEL \	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)#define _PAGE_KERNEL_EXEC \	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;#define __PAGE_KERNEL_RO		(__PAGE_KERNEL & ~_PAGE_RW)#define __PAGE_KERNEL_RX		(__PAGE_KERNEL_EXEC & ~_PAGE_RW)#define __PAGE_KERNEL_NOCACHE		(__PAGE_KERNEL | _PAGE_PCD)#define __PAGE_KERNEL_LARGE		(__PAGE_KERNEL | _PAGE_PSE)#define __PAGE_KERNEL_LARGE_EXEC	(__PAGE_KERNEL_EXEC | _PAGE_PSE)#define PAGE_KERNEL		__pgprot(__PAGE_KERNEL)#define PAGE_KERNEL_RO		__pgprot(__PAGE_KERNEL_RO)#define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)#define PAGE_KERNEL_RX		__pgprot(__PAGE_KERNEL_RX)#define PAGE_KERNEL_NOCACHE	__pgprot(__PAGE_KERNEL_NOCACHE)#define PAGE_KERNEL_LARGE	__pgprot(__PAGE_KERNEL_LARGE)#define PAGE_KERNEL_LARGE_EXEC	__pgprot(__PAGE_KERNEL_LARGE_EXEC)/* * The i386 can't do page protection for execute, and considers that * the same are read. Also, write permissions imply read permissions. * This is the closest we can get.. */#define __P000	PAGE_NONE#define __P001	PAGE_READONLY#define __P010	PAGE_COPY#define __P011	PAGE_COPY#define __P100	PAGE_READONLY_EXEC#define __P101	PAGE_READONLY_EXEC#define __P110	PAGE_COPY_EXEC#define __P111	PAGE_COPY_EXEC#define __S000	PAGE_NONE#define __S001	PAGE_READONLY#define __S010	PAGE_SHARED#define __S011	PAGE_SHARED#define __S100	PAGE_READONLY_EXEC#define __S101	PAGE_READONLY_EXEC#define __S110	PAGE_SHARED_EXEC#define __S111	PAGE_SHARED_EXEC/* * Define this if things work differently on an i386 and an i486: * it will (on an i486) warn about kernel memory accesses that are * done without a 'access_ok(VERIFY_WRITE,..)' */#undef TEST_ACCESS_OK/* The boot page tables (all created as a single array) */extern unsigned long pg0[];#define pte_present(x)	((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */#define pmd_none(x)	(!(unsigned long)pmd_val(x))#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */static inline int pte_dirty(pte_t pte)		{ return (pte).pte_low & _PAGE_DIRTY; }static inline int pte_young(pte_t pte)		{ return (pte).pte_low & _PAGE_ACCESSED; }static inline int pte_write(pte_t pte)		{ return (pte).pte_low & _PAGE_RW; }static inline int pte_huge(pte_t pte)		{ return (pte).pte_low & _PAGE_PSE; }/* * The following only works if pte_present() is not true. */static inline int pte_file(pte_t pte)		{ return (pte).pte_low & _PAGE_FILE; }static inline pte_t pte_mkclean(pte_t pte)	{ (pte).pte_low &= ~_PAGE_DIRTY; return pte; }static inline pte_t pte_mkold(pte_t pte)	{ (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }static inline pte_t pte_wrprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_RW; return pte; }static inline pte_t pte_mkdirty(pte_t pte)	{ (pte).pte_low |= _PAGE_DIRTY; return pte; }static inline pte_t pte_mkyoung(pte_t pte)	{ (pte).pte_low |= _PAGE_ACCESSED; return pte; }static inline pte_t pte_mkwrite(pte_t pte)	{ (pte).pte_low |= _PAGE_RW; return pte; }static inline pte_t pte_mkhuge(pte_t pte)	{ (pte).pte_low |= _PAGE_PSE; return pte; }#ifdef CONFIG_X86_PAE# include <asm/pgtable-3level.h>#else# include <asm/pgtable-2level.h>#endif#ifndef CONFIG_PARAVIRT/* * Rules for using pte_update - it must be called after any PTE update which * has not been done using the set_pte / clear_pte interfaces.  It is used by * shadow mode hypervisors to resynchronize the shadow page tables.  Kernel PTE * updates should either be sets, clears, or set_pte_atomic for P->P * transitions, which means this hook should only be called for user PTEs. * This hook implies a P->P protection or access change has taken place, which * requires a subsequent TLB flush.  The notification can optionally be delayed * until the TLB flush event by using the pte_update_defer form of the * interface, but care must be taken to assure that the flush happens while * still holding the same page table lock so that the shadow and primary pages * do not become out of sync on SMP. */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -