📄 fw-sbp2.c
字号:
SBP2_RECONNECT_REQUEST, lu->login_id, NULL) < 0) { if (lu->retries++ >= 5) { fw_error("failed to reconnect to %s\n", unit->device.bus_id); /* Fall back and try to log in again. */ lu->retries = 0; PREPARE_DELAYED_WORK(&lu->work, sbp2_login); } if (queue_delayed_work(sbp2_wq, &lu->work, DIV_ROUND_UP(HZ, 5))) kref_get(&lu->tgt->kref); kref_put(&lu->tgt->kref, sbp2_release_target); return; } lu->generation = generation; lu->tgt->node_id = node_id; lu->tgt->address_high = local_node_id << 16; fw_notify("reconnected to %s LUN %04x (%d retries)\n", unit->device.bus_id, lu->lun, lu->retries); sbp2_agent_reset(lu); sbp2_cancel_orbs(lu); kref_put(&lu->tgt->kref, sbp2_release_target);}static void sbp2_update(struct fw_unit *unit){ struct sbp2_target *tgt = unit->device.driver_data; struct sbp2_logical_unit *lu; fw_device_enable_phys_dma(fw_device(unit->device.parent)); /* * Fw-core serializes sbp2_update() against sbp2_remove(). * Iteration over tgt->lu_list is therefore safe here. */ list_for_each_entry(lu, &tgt->lu_list, link) { lu->retries = 0; if (queue_delayed_work(sbp2_wq, &lu->work, 0)) kref_get(&tgt->kref); }}#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e#define SBP2_SW_VERSION_ENTRY 0x00010483static const struct fw_device_id sbp2_id_table[] = { { .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION, .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, .version = SBP2_SW_VERSION_ENTRY, }, { }};static struct fw_driver sbp2_driver = { .driver = { .owner = THIS_MODULE, .name = sbp2_driver_name, .bus = &fw_bus_type, .probe = sbp2_probe, .remove = sbp2_remove, }, .update = sbp2_update, .id_table = sbp2_id_table,};static unsigned intsbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data){ int sam_status; sense_data[0] = 0x70; sense_data[1] = 0x0; sense_data[2] = sbp2_status[1]; sense_data[3] = sbp2_status[4]; sense_data[4] = sbp2_status[5]; sense_data[5] = sbp2_status[6]; sense_data[6] = sbp2_status[7]; sense_data[7] = 10; sense_data[8] = sbp2_status[8]; sense_data[9] = sbp2_status[9]; sense_data[10] = sbp2_status[10]; sense_data[11] = sbp2_status[11]; sense_data[12] = sbp2_status[2]; sense_data[13] = sbp2_status[3]; sense_data[14] = sbp2_status[12]; sense_data[15] = sbp2_status[13]; sam_status = sbp2_status[0] & 0x3f; switch (sam_status) { case SAM_STAT_GOOD: case SAM_STAT_CHECK_CONDITION: case SAM_STAT_CONDITION_MET: case SAM_STAT_BUSY: case SAM_STAT_RESERVATION_CONFLICT: case SAM_STAT_COMMAND_TERMINATED: return DID_OK << 16 | sam_status; default: return DID_ERROR << 16; }}static voidcomplete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status){ struct sbp2_command_orb *orb = container_of(base_orb, struct sbp2_command_orb, base); struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent); int result; if (status != NULL) { if (STATUS_GET_DEAD(*status)) sbp2_agent_reset(orb->lu); switch (STATUS_GET_RESPONSE(*status)) { case SBP2_STATUS_REQUEST_COMPLETE: result = DID_OK << 16; break; case SBP2_STATUS_TRANSPORT_FAILURE: result = DID_BUS_BUSY << 16; break; case SBP2_STATUS_ILLEGAL_REQUEST: case SBP2_STATUS_VENDOR_DEPENDENT: default: result = DID_ERROR << 16; break; } if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), orb->cmd->sense_buffer); } else { /* * If the orb completes with status == NULL, something * went wrong, typically a bus reset happened mid-orb * or when sending the write (less likely). */ result = DID_BUS_BUSY << 16; } dma_unmap_single(device->card->device, orb->base.request_bus, sizeof(orb->request), DMA_TO_DEVICE); if (scsi_sg_count(orb->cmd) > 0) dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); if (orb->page_table_bus != 0) dma_unmap_single(device->card->device, orb->page_table_bus, sizeof(orb->page_table), DMA_TO_DEVICE); orb->cmd->result = result; orb->done(orb->cmd);}static intsbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device, struct sbp2_logical_unit *lu){ struct scatterlist *sg; int sg_len, l, i, j, count; dma_addr_t sg_addr; sg = scsi_sglist(orb->cmd); count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); if (count == 0) goto fail; /* * Handle the special case where there is only one element in * the scatter list by converting it to an immediate block * request. This is also a workaround for broken devices such * as the second generation iPod which doesn't support page * tables. */ if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) { orb->request.data_descriptor.high = lu->tgt->address_high; orb->request.data_descriptor.low = sg_dma_address(sg); orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)); return 0; } /* * Convert the scatterlist to an sbp2 page table. If any * scatterlist entries are too big for sbp2, we split them as we * go. Even if we ask the block I/O layer to not give us sg * elements larger than 65535 bytes, some IOMMUs may merge sg elements * during DMA mapping, and Linux currently doesn't prevent this. */ for (i = 0, j = 0; i < count; i++) { sg_len = sg_dma_len(sg + i); sg_addr = sg_dma_address(sg + i); while (sg_len) { /* FIXME: This won't get us out of the pinch. */ if (unlikely(j >= ARRAY_SIZE(orb->page_table))) { fw_error("page table overflow\n"); goto fail_page_table; } l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH); orb->page_table[j].low = sg_addr; orb->page_table[j].high = (l << 16); sg_addr += l; sg_len -= l; j++; } } fw_memcpy_to_be32(orb->page_table, orb->page_table, sizeof(orb->page_table[0]) * j); orb->page_table_bus = dma_map_single(device->card->device, orb->page_table, sizeof(orb->page_table), DMA_TO_DEVICE); if (dma_mapping_error(orb->page_table_bus)) goto fail_page_table; /* * The data_descriptor pointer is the one case where we need * to fill in the node ID part of the address. All other * pointers assume that the data referenced reside on the * initiator (i.e. us), but data_descriptor can refer to data * on other nodes so we need to put our ID in descriptor.high. */ orb->request.data_descriptor.high = lu->tgt->address_high; orb->request.data_descriptor.low = orb->page_table_bus; orb->request.misc |= COMMAND_ORB_PAGE_TABLE_PRESENT | COMMAND_ORB_DATA_SIZE(j); return 0; fail_page_table: dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); fail: return -ENOMEM;}/* SCSI stack integration */static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done){ struct sbp2_logical_unit *lu = cmd->device->hostdata; struct fw_device *device = fw_device(lu->tgt->unit->device.parent); struct sbp2_command_orb *orb; unsigned max_payload; int retval = SCSI_MLQUEUE_HOST_BUSY; /* * Bidirectional commands are not yet implemented, and unknown * transfer direction not handled. */ if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); cmd->result = DID_ERROR << 16; done(cmd); return 0; } orb = kzalloc(sizeof(*orb), GFP_ATOMIC); if (orb == NULL) { fw_notify("failed to alloc orb\n"); return SCSI_MLQUEUE_HOST_BUSY; } /* Initialize rcode to something not RCODE_COMPLETE. */ orb->base.rcode = -1; kref_init(&orb->base.kref); orb->lu = lu; orb->done = done; orb->cmd = cmd; orb->request.next.high = SBP2_ORB_NULL; orb->request.next.low = 0x0; /* * At speed 100 we can do 512 bytes per packet, at speed 200, * 1024 bytes per packet etc. The SBP-2 max_payload field * specifies the max payload size as 2 ^ (max_payload + 2), so * if we set this to max_speed + 7, we get the right value. */ max_payload = min(device->max_speed + 7, device->card->max_receive - 1); orb->request.misc = COMMAND_ORB_MAX_PAYLOAD(max_payload) | COMMAND_ORB_SPEED(device->max_speed) | COMMAND_ORB_NOTIFY; if (cmd->sc_data_direction == DMA_FROM_DEVICE) orb->request.misc |= COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA); else if (cmd->sc_data_direction == DMA_TO_DEVICE) orb->request.misc |= COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA); if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) goto out; fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request)); memset(orb->request.command_block, 0, sizeof(orb->request.command_block)); memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd)); orb->base.callback = complete_command_orb; orb->base.request_bus = dma_map_single(device->card->device, &orb->request, sizeof(orb->request), DMA_TO_DEVICE); if (dma_mapping_error(orb->base.request_bus)) goto out; sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation, lu->command_block_agent_address + SBP2_ORB_POINTER); retval = 0; out: kref_put(&orb->base.kref, free_orb); return retval;}static int sbp2_scsi_slave_alloc(struct scsi_device *sdev){ struct sbp2_logical_unit *lu = sdev->hostdata; sdev->allow_restart = 1; if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) sdev->inquiry_len = 36; return 0;}static int sbp2_scsi_slave_configure(struct scsi_device *sdev){ struct sbp2_logical_unit *lu = sdev->hostdata; sdev->use_10_for_rw = 1; if (sdev->type == TYPE_ROM) sdev->use_10_for_ms = 1; if (sdev->type == TYPE_DISK && lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) sdev->skip_ms_page_8 = 1; if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) sdev->fix_capacity = 1; if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512); return 0;}/* * Called by scsi stack when something has really gone wrong. Usually * called when a command has timed-out for some reason. */static int sbp2_scsi_abort(struct scsi_cmnd *cmd){ struct sbp2_logical_unit *lu = cmd->device->hostdata; fw_notify("sbp2_scsi_abort\n"); sbp2_agent_reset(lu); sbp2_cancel_orbs(lu); return SUCCESS;}/* * Format of /sys/bus/scsi/devices/.../ieee1394_id: * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) * * This is the concatenation of target port identifier and logical unit * identifier as per SAM-2...SAM-4 annex A. */static ssize_tsbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr, char *buf){ struct scsi_device *sdev = to_scsi_device(dev); struct sbp2_logical_unit *lu; struct fw_device *device; if (!sdev) return 0; lu = sdev->hostdata; device = fw_device(lu->tgt->unit->device.parent); return sprintf(buf, "%08x%08x:%06x:%04x\n", device->config_rom[3], device->config_rom[4], lu->tgt->directory_id, lu->lun);}static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { &dev_attr_ieee1394_id, NULL};static struct scsi_host_template scsi_driver_template = { .module = THIS_MODULE, .name = "SBP-2 IEEE-1394", .proc_name = sbp2_driver_name, .queuecommand = sbp2_scsi_queuecommand, .slave_alloc = sbp2_scsi_slave_alloc, .slave_configure = sbp2_scsi_slave_configure, .eh_abort_handler = sbp2_scsi_abort, .this_id = -1, .sg_tablesize = SG_ALL, .use_clustering = ENABLE_CLUSTERING, .cmd_per_lun = 1, .can_queue = 1, .sdev_attrs = sbp2_scsi_sysfs_attrs,};MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");MODULE_DESCRIPTION("SCSI over IEEE1394");MODULE_LICENSE("GPL");MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);/* Provide a module alias so root-on-sbp2 initrds don't break. */#ifndef CONFIG_IEEE1394_SBP2_MODULEMODULE_ALIAS("sbp2");#endifstatic int __init sbp2_init(void){ sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME); if (!sbp2_wq) return -ENOMEM; return driver_register(&sbp2_driver.driver);}static void __exit sbp2_cleanup(void){ driver_unregister(&sbp2_driver.driver); destroy_workqueue(sbp2_wq);}module_init(sbp2_init);module_exit(sbp2_cleanup);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -