📄 driver.c
字号:
(id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice))) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) && (id->bDeviceClass != dev->descriptor.bDeviceClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) && (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) && (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol)) return 0; return 1;}/* returns 0 if no match, 1 if match */int usb_match_one_id(struct usb_interface *interface, const struct usb_device_id *id){ struct usb_host_interface *intf; struct usb_device *dev; /* proc_connectinfo in devio.c may call us with id == NULL. */ if (id == NULL) return 0; intf = interface->cur_altsetting; dev = interface_to_usbdev(interface); if (!usb_match_device(dev, id)) return 0; /* The interface class, subclass, and protocol should never be * checked for a match if the device class is Vendor Specific, * unless the match record specifies the Vendor ID. */ if (dev->descriptor.bDeviceClass == USB_CLASS_VENDOR_SPEC && !(id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && (id->match_flags & (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL))) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) && (id->bInterfaceClass != intf->desc.bInterfaceClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) && (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass)) return 0; if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) && (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol)) return 0; return 1;}EXPORT_SYMBOL_GPL(usb_match_one_id);/** * usb_match_id - find first usb_device_id matching device or interface * @interface: the interface of interest * @id: array of usb_device_id structures, terminated by zero entry * * usb_match_id searches an array of usb_device_id's and returns * the first one matching the device or interface, or null. * This is used when binding (or rebinding) a driver to an interface. * Most USB device drivers will use this indirectly, through the usb core, * but some layered driver frameworks use it directly. * These device tables are exported with MODULE_DEVICE_TABLE, through * modutils, to support the driver loading functionality of USB hotplugging. * * What Matches: * * The "match_flags" element in a usb_device_id controls which * members are used. If the corresponding bit is set, the * value in the device_id must match its corresponding member * in the device or interface descriptor, or else the device_id * does not match. * * "driver_info" is normally used only by device drivers, * but you can create a wildcard "matches anything" usb_device_id * as a driver's "modules.usbmap" entry if you provide an id with * only a nonzero "driver_info" field. If you do this, the USB device * driver's probe() routine should use additional intelligence to * decide whether to bind to the specified interface. * * What Makes Good usb_device_id Tables: * * The match algorithm is very simple, so that intelligence in * driver selection must come from smart driver id records. * Unless you have good reasons to use another selection policy, * provide match elements only in related groups, and order match * specifiers from specific to general. Use the macros provided * for that purpose if you can. * * The most specific match specifiers use device descriptor * data. These are commonly used with product-specific matches; * the USB_DEVICE macro lets you provide vendor and product IDs, * and you can also match against ranges of product revisions. * These are widely used for devices with application or vendor * specific bDeviceClass values. * * Matches based on device class/subclass/protocol specifications * are slightly more general; use the USB_DEVICE_INFO macro, or * its siblings. These are used with single-function devices * where bDeviceClass doesn't specify that each interface has * its own class. * * Matches based on interface class/subclass/protocol are the * most general; they let drivers bind to any interface on a * multiple-function device. Use the USB_INTERFACE_INFO * macro, or its siblings, to match class-per-interface style * devices (as recorded in bInterfaceClass). * * Note that an entry created by USB_INTERFACE_INFO won't match * any interface if the device class is set to Vendor-Specific. * This is deliberate; according to the USB spec the meanings of * the interface class/subclass/protocol for these devices are also * vendor-specific, and hence matching against a standard product * class wouldn't work anyway. If you really want to use an * interface-based match for such a device, create a match record * that also specifies the vendor ID. (Unforunately there isn't a * standard macro for creating records like this.) * * Within those groups, remember that not all combinations are * meaningful. For example, don't give a product version range * without vendor and product IDs; or specify a protocol without * its associated class and subclass. */const struct usb_device_id *usb_match_id(struct usb_interface *interface, const struct usb_device_id *id){ /* proc_connectinfo in devio.c may call us with id == NULL. */ if (id == NULL) return NULL; /* It is important to check that id->driver_info is nonzero, since an entry that is all zeroes except for a nonzero id->driver_info is the way to create an entry that indicates that the driver want to examine every device and interface. */ for (; id->idVendor || id->idProduct || id->bDeviceClass || id->bInterfaceClass || id->driver_info; id++) { if (usb_match_one_id(interface, id)) return id; } return NULL;}EXPORT_SYMBOL_GPL_FUTURE(usb_match_id);static int usb_device_match(struct device *dev, struct device_driver *drv){ /* devices and interfaces are handled separately */ if (is_usb_device(dev)) { /* interface drivers never match devices */ if (!is_usb_device_driver(drv)) return 0; /* TODO: Add real matching code */ return 1; } else { struct usb_interface *intf; struct usb_driver *usb_drv; const struct usb_device_id *id; /* device drivers never match interfaces */ if (is_usb_device_driver(drv)) return 0; intf = to_usb_interface(dev); usb_drv = to_usb_driver(drv); id = usb_match_id(intf, usb_drv->id_table); if (id) return 1; id = usb_match_dynamic_id(intf, usb_drv); if (id) return 1; } return 0;}#ifdef CONFIG_HOTPLUGstatic int usb_uevent(struct device *dev, struct kobj_uevent_env *env){ struct usb_device *usb_dev; /* driver is often null here; dev_dbg() would oops */ pr_debug ("usb %s: uevent\n", dev->bus_id); if (is_usb_device(dev)) usb_dev = to_usb_device(dev); else { struct usb_interface *intf = to_usb_interface(dev); usb_dev = interface_to_usbdev(intf); } if (usb_dev->devnum < 0) { pr_debug ("usb %s: already deleted?\n", dev->bus_id); return -ENODEV; } if (!usb_dev->bus) { pr_debug ("usb %s: bus removed?\n", dev->bus_id); return -ENODEV; }#ifdef CONFIG_USB_DEVICEFS /* If this is available, userspace programs can directly read * all the device descriptors we don't tell them about. Or * act as usermode drivers. */ if (add_uevent_var(env, "DEVICE=/proc/bus/usb/%03d/%03d", usb_dev->bus->busnum, usb_dev->devnum)) return -ENOMEM;#endif /* per-device configurations are common */ if (add_uevent_var(env, "PRODUCT=%x/%x/%x", le16_to_cpu(usb_dev->descriptor.idVendor), le16_to_cpu(usb_dev->descriptor.idProduct), le16_to_cpu(usb_dev->descriptor.bcdDevice))) return -ENOMEM; /* class-based driver binding models */ if (add_uevent_var(env, "TYPE=%d/%d/%d", usb_dev->descriptor.bDeviceClass, usb_dev->descriptor.bDeviceSubClass, usb_dev->descriptor.bDeviceProtocol)) return -ENOMEM; return 0;}#elsestatic int usb_uevent(struct device *dev, struct kobj_uevent_env *env){ return -ENODEV;}#endif /* CONFIG_HOTPLUG *//** * usb_register_device_driver - register a USB device (not interface) driver * @new_udriver: USB operations for the device driver * @owner: module owner of this driver. * * Registers a USB device driver with the USB core. The list of * unattached devices will be rescanned whenever a new driver is * added, allowing the new driver to attach to any recognized devices. * Returns a negative error code on failure and 0 on success. */int usb_register_device_driver(struct usb_device_driver *new_udriver, struct module *owner){ int retval = 0; if (usb_disabled()) return -ENODEV; new_udriver->drvwrap.for_devices = 1; new_udriver->drvwrap.driver.name = (char *) new_udriver->name; new_udriver->drvwrap.driver.bus = &usb_bus_type; new_udriver->drvwrap.driver.probe = usb_probe_device; new_udriver->drvwrap.driver.remove = usb_unbind_device; new_udriver->drvwrap.driver.owner = owner; retval = driver_register(&new_udriver->drvwrap.driver); if (!retval) { pr_info("%s: registered new device driver %s\n", usbcore_name, new_udriver->name); usbfs_update_special(); } else { printk(KERN_ERR "%s: error %d registering device " " driver %s\n", usbcore_name, retval, new_udriver->name); } return retval;}EXPORT_SYMBOL_GPL(usb_register_device_driver);/** * usb_deregister_device_driver - unregister a USB device (not interface) driver * @udriver: USB operations of the device driver to unregister * Context: must be able to sleep * * Unlinks the specified driver from the internal USB driver list. */void usb_deregister_device_driver(struct usb_device_driver *udriver){ pr_info("%s: deregistering device driver %s\n", usbcore_name, udriver->name); driver_unregister(&udriver->drvwrap.driver); usbfs_update_special();}EXPORT_SYMBOL_GPL(usb_deregister_device_driver);/** * usb_register_driver - register a USB interface driver * @new_driver: USB operations for the interface driver * @owner: module owner of this driver. * @mod_name: module name string * * Registers a USB interface driver with the USB core. The list of * unattached interfaces will be rescanned whenever a new driver is * added, allowing the new driver to attach to any recognized interfaces. * Returns a negative error code on failure and 0 on success. * * NOTE: if you want your driver to use the USB major number, you must call * usb_register_dev() to enable that functionality. This function no longer * takes care of that. */int usb_register_driver(struct usb_driver *new_driver, struct module *owner, const char *mod_name){ int retval = 0; if (usb_disabled()) return -ENODEV; new_driver->drvwrap.for_devices = 0; new_driver->drvwrap.driver.name = (char *) new_driver->name; new_driver->drvwrap.driver.bus = &usb_bus_type; new_driver->drvwrap.driver.probe = usb_probe_interface; new_driver->drvwrap.driver.remove = usb_unbind_interface; new_driver->drvwrap.driver.owner = owner; new_driver->drvwrap.driver.mod_name = mod_name; spin_lock_init(&new_driver->dynids.lock); INIT_LIST_HEAD(&new_driver->dynids.list); retval = driver_register(&new_driver->drvwrap.driver); if (!retval) { pr_info("%s: registered new interface driver %s\n", usbcore_name, new_driver->name); usbfs_update_special(); usb_create_newid_file(new_driver); } else { printk(KERN_ERR "%s: error %d registering interface " " driver %s\n", usbcore_name, retval, new_driver->name); } return retval;}EXPORT_SYMBOL_GPL_FUTURE(usb_register_driver);/** * usb_deregister - unregister a USB interface driver * @driver: USB operations of the interface driver to unregister * Context: must be able to sleep * * Unlinks the specified driver from the internal USB driver list. * * NOTE: If you called usb_register_dev(), you still need to call * usb_deregister_dev() to clean up your driver's allocated minor numbers, * this * call will no longer do it for you. */void usb_deregister(struct usb_driver *driver){ pr_info("%s: deregistering interface driver %s\n", usbcore_name, driver->name); usb_remove_newid_file(driver); usb_free_dynids(driver); driver_unregister(&driver->drvwrap.driver); usbfs_update_special();}EXPORT_SYMBOL_GPL_FUTURE(usb_deregister);#ifdef CONFIG_PM/* Caller has locked udev's pm_mutex */static int usb_suspend_device(struct usb_device *udev, pm_message_t msg){ struct usb_device_driver *udriver; int status = 0; if (udev->state == USB_STATE_NOTATTACHED || udev->state == USB_STATE_SUSPENDED) goto done;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -