⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blackfin_sram.c

📁 linux 内核源代码
💻 C
字号:
/* * File:         arch/blackfin/mm/blackfin_sram.c * Based on: * Author: * * Created: * Description:  SRAM driver for Blackfin ADSP-BF5xx * * Modified: *               Copyright 2004-2007 Analog Devices Inc. * * Bugs:         Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA */#include <linux/module.h>#include <linux/kernel.h>#include <linux/types.h>#include <linux/miscdevice.h>#include <linux/ioport.h>#include <linux/fcntl.h>#include <linux/init.h>#include <linux/poll.h>#include <linux/proc_fs.h>#include <linux/spinlock.h>#include <linux/rtc.h>#include <asm/blackfin.h>#include "blackfin_sram.h"spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;#if CONFIG_L1_MAX_PIECE < 16#undef CONFIG_L1_MAX_PIECE#define CONFIG_L1_MAX_PIECE        16#endif#if CONFIG_L1_MAX_PIECE > 1024#undef CONFIG_L1_MAX_PIECE#define CONFIG_L1_MAX_PIECE        1024#endif#define SRAM_SLT_NULL      0#define SRAM_SLT_FREE      1#define SRAM_SLT_ALLOCATED 2/* the data structure for L1 scratchpad and DATA SRAM */struct l1_sram_piece {	void *paddr;	int size;	int flag;	pid_t pid;};static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE];#if L1_DATA_A_LENGTH != 0static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE];#endif#if L1_DATA_B_LENGTH != 0static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE];#endif#if L1_CODE_LENGTH != 0static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE];#endif/* L1 Scratchpad SRAM initialization function */void __init l1sram_init(void){	printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",	       L1_SCRATCH_LENGTH >> 10);	memset(&l1_ssram, 0x00, sizeof(l1_ssram));	l1_ssram[0].paddr = (void *)L1_SCRATCH_START;	l1_ssram[0].size = L1_SCRATCH_LENGTH;	l1_ssram[0].flag = SRAM_SLT_FREE;	/* mutex initialize */	spin_lock_init(&l1sram_lock);}void __init l1_data_sram_init(void){#if L1_DATA_A_LENGTH != 0	memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram));	l1_data_A_sram[0].paddr = (void *)L1_DATA_A_START +					(_ebss_l1 - _sdata_l1);	l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);	l1_data_A_sram[0].flag = SRAM_SLT_FREE;	printk(KERN_INFO "Blackfin Data A SRAM: %d KB (%d KB free)\n",	       L1_DATA_A_LENGTH >> 10, l1_data_A_sram[0].size >> 10);#endif#if L1_DATA_B_LENGTH != 0	memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram));	l1_data_B_sram[0].paddr = (void *)L1_DATA_B_START +				(_ebss_b_l1 - _sdata_b_l1);	l1_data_B_sram[0].size = L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);	l1_data_B_sram[0].flag = SRAM_SLT_FREE;	printk(KERN_INFO "Blackfin Data B SRAM: %d KB (%d KB free)\n",	       L1_DATA_B_LENGTH >> 10, l1_data_B_sram[0].size >> 10);#endif	/* mutex initialize */	spin_lock_init(&l1_data_sram_lock);}void __init l1_inst_sram_init(void){#if L1_CODE_LENGTH != 0	memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram));	l1_inst_sram[0].paddr = (void *)L1_CODE_START + (_etext_l1 - _stext_l1);	l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1);	l1_inst_sram[0].flag = SRAM_SLT_FREE;	printk(KERN_INFO "Blackfin Instruction SRAM: %d KB (%d KB free)\n",	       L1_CODE_LENGTH >> 10, l1_inst_sram[0].size >> 10);#endif	/* mutex initialize */	spin_lock_init(&l1_inst_sram_lock);}/* L1 memory allocate function */static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count){	int i, index = 0;	void *addr = NULL;	if (size <= 0)		return NULL;	/* Align the size */	size = (size + 3) & ~3;	/* not use the good method to match the best slot !!! */	/* search an available memory slot */	for (i = 0; i < count; i++) {		if ((pfree[i].flag == SRAM_SLT_FREE)		    && (pfree[i].size >= size)) {			addr = pfree[i].paddr;			pfree[i].flag = SRAM_SLT_ALLOCATED;			pfree[i].pid = current->pid;			index = i;			break;		}	}	if (i >= count)		return NULL;	/* updated the NULL memory slot !!! */	if (pfree[i].size > size) {		for (i = 0; i < count; i++) {			if (pfree[i].flag == SRAM_SLT_NULL) {				pfree[i].pid = 0;				pfree[i].flag = SRAM_SLT_FREE;				pfree[i].paddr = addr + size;				pfree[i].size = pfree[index].size - size;				pfree[index].size = size;				break;			}		}	}	return addr;}/* Allocate the largest available block.  */static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count,				unsigned long *psize){	unsigned long best = 0;	int i, index = -1;	void *addr = NULL;	/* search an available memory slot */	for (i = 0; i < count; i++) {		if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) {			addr = pfree[i].paddr;			index = i;			best = pfree[i].size;		}	}	if (index < 0)		return NULL;	*psize = best;	pfree[index].pid = current->pid;	pfree[index].flag = SRAM_SLT_ALLOCATED;	return addr;}/* L1 memory free function */static int _l1_sram_free(const void *addr,			struct l1_sram_piece *pfree,			int count){	int i, index = 0;	/* search the relevant memory slot */	for (i = 0; i < count; i++) {		if (pfree[i].paddr == addr) {			if (pfree[i].flag != SRAM_SLT_ALLOCATED) {				/* error log */				return -1;			}			index = i;			break;		}	}	if (i >= count)		return -1;	pfree[index].pid = 0;	pfree[index].flag = SRAM_SLT_FREE;	/* link the next address slot */	for (i = 0; i < count; i++) {		if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr)		    && (pfree[i].flag == SRAM_SLT_FREE)) {			pfree[i].pid = 0;			pfree[i].flag = SRAM_SLT_NULL;			pfree[index].size += pfree[i].size;			pfree[index].flag = SRAM_SLT_FREE;			break;		}	}	/* link the last address slot */	for (i = 0; i < count; i++) {		if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) &&		    (pfree[i].flag == SRAM_SLT_FREE)) {			pfree[index].flag = SRAM_SLT_NULL;			pfree[i].size += pfree[index].size;			break;		}	}	return 0;}int sram_free(const void *addr){	if (0) {}#if L1_CODE_LENGTH != 0	else if (addr >= (void *)L1_CODE_START		 && addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))		return l1_inst_sram_free(addr);#endif#if L1_DATA_A_LENGTH != 0	else if (addr >= (void *)L1_DATA_A_START		 && addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))		return l1_data_A_sram_free(addr);#endif#if L1_DATA_B_LENGTH != 0	else if (addr >= (void *)L1_DATA_B_START		 && addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))		return l1_data_B_sram_free(addr);#endif	else		return -1;}EXPORT_SYMBOL(sram_free);void *l1_data_A_sram_alloc(size_t size){	unsigned flags;	void *addr = NULL;	/* add mutex operation */	spin_lock_irqsave(&l1_data_sram_lock, flags);#if L1_DATA_A_LENGTH != 0	addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));#endif	/* add mutex operation */	spin_unlock_irqrestore(&l1_data_sram_lock, flags);	pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",		 (long unsigned int)addr, size);	return addr;}EXPORT_SYMBOL(l1_data_A_sram_alloc);int l1_data_A_sram_free(const void *addr){	unsigned flags;	int ret;	/* add mutex operation */	spin_lock_irqsave(&l1_data_sram_lock, flags);#if L1_DATA_A_LENGTH != 0	ret = _l1_sram_free(addr,			   l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));#else	ret = -1;#endif	/* add mutex operation */	spin_unlock_irqrestore(&l1_data_sram_lock, flags);	return ret;}EXPORT_SYMBOL(l1_data_A_sram_free);void *l1_data_B_sram_alloc(size_t size){#if L1_DATA_B_LENGTH != 0	unsigned flags;	void *addr;	/* add mutex operation */	spin_lock_irqsave(&l1_data_sram_lock, flags);	addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));	/* add mutex operation */	spin_unlock_irqrestore(&l1_data_sram_lock, flags);	pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",		 (long unsigned int)addr, size);	return addr;#else	return NULL;#endif}EXPORT_SYMBOL(l1_data_B_sram_alloc);int l1_data_B_sram_free(const void *addr){#if L1_DATA_B_LENGTH != 0	unsigned flags;	int ret;	/* add mutex operation */	spin_lock_irqsave(&l1_data_sram_lock, flags);	ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));	/* add mutex operation */	spin_unlock_irqrestore(&l1_data_sram_lock, flags);	return ret;#else	return -1;#endif}EXPORT_SYMBOL(l1_data_B_sram_free);void *l1_data_sram_alloc(size_t size){	void *addr = l1_data_A_sram_alloc(size);	if (!addr)		addr = l1_data_B_sram_alloc(size);	return addr;}EXPORT_SYMBOL(l1_data_sram_alloc);void *l1_data_sram_zalloc(size_t size){	void *addr = l1_data_sram_alloc(size);	if (addr)		memset(addr, 0x00, size);	return addr;}EXPORT_SYMBOL(l1_data_sram_zalloc);int l1_data_sram_free(const void *addr){	int ret;	ret = l1_data_A_sram_free(addr);	if (ret == -1)		ret = l1_data_B_sram_free(addr);	return ret;}EXPORT_SYMBOL(l1_data_sram_free);void *l1_inst_sram_alloc(size_t size){#if L1_DATA_A_LENGTH != 0	unsigned flags;	void *addr;	/* add mutex operation */	spin_lock_irqsave(&l1_inst_sram_lock, flags);	addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));	/* add mutex operation */	spin_unlock_irqrestore(&l1_inst_sram_lock, flags);	pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",		 (long unsigned int)addr, size);	return addr;#else	return NULL;#endif}EXPORT_SYMBOL(l1_inst_sram_alloc);int l1_inst_sram_free(const void *addr){#if L1_CODE_LENGTH != 0	unsigned flags;	int ret;	/* add mutex operation */	spin_lock_irqsave(&l1_inst_sram_lock, flags);	ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));	/* add mutex operation */	spin_unlock_irqrestore(&l1_inst_sram_lock, flags);	return ret;#else	return -1;#endif}EXPORT_SYMBOL(l1_inst_sram_free);/* L1 Scratchpad memory allocate function */void *l1sram_alloc(size_t size){	unsigned flags;	void *addr;	/* add mutex operation */	spin_lock_irqsave(&l1sram_lock, flags);	addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram));	/* add mutex operation */	spin_unlock_irqrestore(&l1sram_lock, flags);	return addr;}/* L1 Scratchpad memory allocate function */void *l1sram_alloc_max(size_t *psize){	unsigned flags;	void *addr;	/* add mutex operation */	spin_lock_irqsave(&l1sram_lock, flags);	addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize);	/* add mutex operation */	spin_unlock_irqrestore(&l1sram_lock, flags);	return addr;}/* L1 Scratchpad memory free function */int l1sram_free(const void *addr){	unsigned flags;	int ret;	/* add mutex operation */	spin_lock_irqsave(&l1sram_lock, flags);	ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram));	/* add mutex operation */	spin_unlock_irqrestore(&l1sram_lock, flags);	return ret;}int sram_free_with_lsl(const void *addr){	struct sram_list_struct *lsl, **tmp;	struct mm_struct *mm = current->mm;	for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)		if ((*tmp)->addr == addr)			goto found;	return -1;found:	lsl = *tmp;	sram_free(addr);	*tmp = lsl->next;	kfree(lsl);	return 0;}EXPORT_SYMBOL(sram_free_with_lsl);void *sram_alloc_with_lsl(size_t size, unsigned long flags){	void *addr = NULL;	struct sram_list_struct *lsl = NULL;	struct mm_struct *mm = current->mm;	lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);	if (!lsl)		return NULL;	if (flags & L1_INST_SRAM)		addr = l1_inst_sram_alloc(size);	if (addr == NULL && (flags & L1_DATA_A_SRAM))		addr = l1_data_A_sram_alloc(size);	if (addr == NULL && (flags & L1_DATA_B_SRAM))		addr = l1_data_B_sram_alloc(size);	if (addr == NULL) {		kfree(lsl);		return NULL;	}	lsl->addr = addr;	lsl->length = size;	lsl->next = mm->context.sram_list;	mm->context.sram_list = lsl;	return addr;}EXPORT_SYMBOL(sram_alloc_with_lsl);#ifdef CONFIG_PROC_FS/* Once we get a real allocator, we'll throw all of this away. * Until then, we need some sort of visibility into the L1 alloc. */static void _l1sram_proc_read(char *buf, int *len, const char *desc,		struct l1_sram_piece *pfree, const int array_size){	int i;	*len += sprintf(&buf[*len], "--- L1 %-14s Size  PID State\n", desc);	for (i = 0; i < array_size; ++i) {		const char *alloc_type;		switch (pfree[i].flag) {		case SRAM_SLT_NULL:      alloc_type = "NULL"; break;		case SRAM_SLT_FREE:      alloc_type = "FREE"; break;		case SRAM_SLT_ALLOCATED: alloc_type = "ALLOCATED"; break;		default:                 alloc_type = "????"; break;		}		*len += sprintf(&buf[*len], "%p-%p %8i %4i %s\n",			pfree[i].paddr, pfree[i].paddr + pfree[i].size,			pfree[i].size, pfree[i].pid, alloc_type);	}}static int l1sram_proc_read(char *buf, char **start, off_t offset, int count,		int *eof, void *data){	int len = 0;	_l1sram_proc_read(buf, &len, "Scratchpad",			l1_ssram, ARRAY_SIZE(l1_ssram));#if L1_DATA_A_LENGTH != 0	_l1sram_proc_read(buf, &len, "Data A",			l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));#endif#if L1_DATA_B_LENGTH != 0	_l1sram_proc_read(buf, &len, "Data B",			l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));#endif#if L1_CODE_LENGTH != 0	_l1sram_proc_read(buf, &len, "Instruction",			l1_inst_sram, ARRAY_SIZE(l1_inst_sram));#endif	return len;}static int __init l1sram_proc_init(void){	struct proc_dir_entry *ptr;	ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);	if (!ptr) {		printk(KERN_WARNING "unable to create /proc/sram\n");		return -1;	}	ptr->owner = THIS_MODULE;	ptr->read_proc = l1sram_proc_read;	return 0;}late_initcall(l1sram_proc_init);#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -