📄 time.c
字号:
static cycle_t rtc_read(void){ return (cycle_t)get_rtc();}static cycle_t timebase_read(void){ return (cycle_t)get_tb();}void update_vsyscall(struct timespec *wall_time, struct clocksource *clock){ u64 t2x, stamp_xsec; if (clock != &clocksource_timebase) return; /* Make userspace gettimeofday spin until we're done. */ ++vdso_data->tb_update_count; smp_mb(); /* XXX this assumes clock->shift == 22 */ /* 4611686018 ~= 2^(20+64-22) / 1e9 */ t2x = (u64) clock->mult * 4611686018ULL; stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; do_div(stamp_xsec, 1000000000); stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; update_gtod(clock->cycle_last, stamp_xsec, t2x);}void update_vsyscall_tz(void){ /* Make userspace gettimeofday spin until we're done. */ ++vdso_data->tb_update_count; smp_mb(); vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; vdso_data->tz_dsttime = sys_tz.tz_dsttime; smp_mb(); ++vdso_data->tb_update_count;}void __init clocksource_init(void){ struct clocksource *clock; if (__USE_RTC()) clock = &clocksource_rtc; else clock = &clocksource_timebase; clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift); if (clocksource_register(clock)) { printk(KERN_ERR "clocksource: %s is already registered\n", clock->name); return; } printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", clock->name, clock->mult, clock->shift);}static int decrementer_set_next_event(unsigned long evt, struct clock_event_device *dev){ __get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt; set_dec(evt); return 0;}static void decrementer_set_mode(enum clock_event_mode mode, struct clock_event_device *dev){ if (mode != CLOCK_EVT_MODE_ONESHOT) decrementer_set_next_event(DECREMENTER_MAX, dev);}static void register_decrementer_clockevent(int cpu){ struct clock_event_device *dec = &per_cpu(decrementers, cpu); *dec = decrementer_clockevent; dec->cpumask = cpumask_of_cpu(cpu); printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n", dec->name, dec->mult, dec->shift, cpu); clockevents_register_device(dec);}void init_decrementer_clockevent(void){ int cpu = smp_processor_id(); decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC, decrementer_clockevent.shift); decrementer_clockevent.max_delta_ns = clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); decrementer_clockevent.min_delta_ns = clockevent_delta2ns(2, &decrementer_clockevent); register_decrementer_clockevent(cpu);}void secondary_cpu_time_init(void){ /* FIME: Should make unrelatred change to move snapshot_timebase * call here ! */ register_decrementer_clockevent(smp_processor_id());}/* This function is only called on the boot processor */void __init time_init(void){ unsigned long flags; struct div_result res; u64 scale, x; unsigned shift; if (__USE_RTC()) { /* 601 processor: dec counts down by 128 every 128ns */ ppc_tb_freq = 1000000000; tb_last_jiffy = get_rtcl(); } else { /* Normal PowerPC with timebase register */ ppc_md.calibrate_decr(); printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); tb_last_jiffy = get_tb(); } tb_ticks_per_jiffy = ppc_tb_freq / HZ; tb_ticks_per_sec = ppc_tb_freq; tb_ticks_per_usec = ppc_tb_freq / 1000000; tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); calc_cputime_factors(); /* * Calculate the length of each tick in ns. It will not be * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, * rounded up. */ x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; do_div(x, ppc_tb_freq); tick_nsec = x; last_tick_len = x << TICKLEN_SCALE; /* * Compute ticklen_to_xs, which is a factor which gets multiplied * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. * It is computed as: * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT * which turns out to be N = 51 - SHIFT_HZ. * This gives the result as a 0.64 fixed-point fraction. * That value is reduced by an offset amounting to 1 xsec per * 2^31 timebase ticks to avoid problems with time going backwards * by 1 xsec when we do timer_recalc_offset due to losing the * fractional xsec. That offset is equal to ppc_tb_freq/2^51 * since there are 2^20 xsec in a second. */ div128_by_32((1ULL << 51) - ppc_tb_freq, 0, tb_ticks_per_jiffy << SHIFT_HZ, &res); div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); ticklen_to_xs = res.result_low; /* Compute tb_to_xs from tick_nsec */ tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); /* * Compute scale factor for sched_clock. * The calibrate_decr() function has set tb_ticks_per_sec, * which is the timebase frequency. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret * the 128-bit result as a 64.64 fixed-point number. * We then shift that number right until it is less than 1.0, * giving us the scale factor and shift count to use in * sched_clock(). */ div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); scale = res.result_low; for (shift = 0; res.result_high != 0; ++shift) { scale = (scale >> 1) | (res.result_high << 63); res.result_high >>= 1; } tb_to_ns_scale = scale; tb_to_ns_shift = shift; /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ boot_tb = get_tb_or_rtc(); write_seqlock_irqsave(&xtime_lock, flags); /* If platform provided a timezone (pmac), we correct the time */ if (timezone_offset) { sys_tz.tz_minuteswest = -timezone_offset / 60; sys_tz.tz_dsttime = 0; } do_gtod.varp = &do_gtod.vars[0]; do_gtod.var_idx = 0; do_gtod.varp->tb_orig_stamp = tb_last_jiffy; __get_cpu_var(last_jiffy) = tb_last_jiffy; do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; do_gtod.varp->tb_to_xs = tb_to_xs; do_gtod.tb_to_us = tb_to_us; vdso_data->tb_orig_stamp = tb_last_jiffy; vdso_data->tb_update_count = 0; vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; vdso_data->tb_to_xs = tb_to_xs; time_freq = 0; write_sequnlock_irqrestore(&xtime_lock, flags); /* Register the clocksource, if we're not running on iSeries */ if (!firmware_has_feature(FW_FEATURE_ISERIES)) clocksource_init(); init_decrementer_clockevent();}#define FEBRUARY 2#define STARTOFTIME 1970#define SECDAY 86400L#define SECYR (SECDAY * 365)#define leapyear(year) ((year) % 4 == 0 && \ ((year) % 100 != 0 || (year) % 400 == 0))#define days_in_year(a) (leapyear(a) ? 366 : 365)#define days_in_month(a) (month_days[(a) - 1])static int month_days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};/* * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) */void GregorianDay(struct rtc_time * tm){ int leapsToDate; int lastYear; int day; int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; lastYear = tm->tm_year - 1; /* * Number of leap corrections to apply up to end of last year */ leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; /* * This year is a leap year if it is divisible by 4 except when it is * divisible by 100 unless it is divisible by 400 * * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was */ day = tm->tm_mon > 2 && leapyear(tm->tm_year); day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + tm->tm_mday; tm->tm_wday = day % 7;}void to_tm(int tim, struct rtc_time * tm){ register int i; register long hms, day; day = tim / SECDAY; hms = tim % SECDAY; /* Hours, minutes, seconds are easy */ tm->tm_hour = hms / 3600; tm->tm_min = (hms % 3600) / 60; tm->tm_sec = (hms % 3600) % 60; /* Number of years in days */ for (i = STARTOFTIME; day >= days_in_year(i); i++) day -= days_in_year(i); tm->tm_year = i; /* Number of months in days left */ if (leapyear(tm->tm_year)) days_in_month(FEBRUARY) = 29; for (i = 1; day >= days_in_month(i); i++) day -= days_in_month(i); days_in_month(FEBRUARY) = 28; tm->tm_mon = i; /* Days are what is left over (+1) from all that. */ tm->tm_mday = day + 1; /* * Determine the day of week */ GregorianDay(tm);}/* Auxiliary function to compute scaling factors *//* Actually the choice of a timebase running at 1/4 the of the bus * frequency giving resolution of a few tens of nanoseconds is quite nice. * It makes this computation very precise (27-28 bits typically) which * is optimistic considering the stability of most processor clock * oscillators and the precision with which the timebase frequency * is measured but does not harm. */unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale){ unsigned mlt=0, tmp, err; /* No concern for performance, it's done once: use a stupid * but safe and compact method to find the multiplier. */ for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { if (mulhwu(inscale, mlt|tmp) < outscale) mlt |= tmp; } /* We might still be off by 1 for the best approximation. * A side effect of this is that if outscale is too large * the returned value will be zero. * Many corner cases have been checked and seem to work, * some might have been forgotten in the test however. */ err = inscale * (mlt+1); if (err <= inscale/2) mlt++; return mlt;}/* * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit * result. */void div128_by_32(u64 dividend_high, u64 dividend_low, unsigned divisor, struct div_result *dr){ unsigned long a, b, c, d; unsigned long w, x, y, z; u64 ra, rb, rc; a = dividend_high >> 32; b = dividend_high & 0xffffffff; c = dividend_low >> 32; d = dividend_low & 0xffffffff; w = a / divisor; ra = ((u64)(a - (w * divisor)) << 32) + b; rb = ((u64) do_div(ra, divisor) << 32) + c; x = ra; rc = ((u64) do_div(rb, divisor) << 32) + d; y = rb; do_div(rc, divisor); z = rc; dr->result_high = ((u64)w << 32) + x; dr->result_low = ((u64)y << 32) + z;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -