⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vfpsingle.c

📁 linux 内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
	return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);}static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr){	struct vfp_single vsm;	u32 d, exceptions = 0;	int rmode = fpscr & FPSCR_RMODE_MASK;	int tm;	vfp_single_unpack(&vsm, m);	vfp_single_dump("VSM", &vsm);	/*	 * Do we have a denormalised number?	 */	tm = vfp_single_type(&vsm);	if (vfp_single_type(&vsm) & VFP_DENORMAL)		exceptions |= FPSCR_IDC;	if (tm & VFP_NAN) {		d = 0;		exceptions |= FPSCR_IOC;	} else if (vsm.exponent >= 127 + 32) {		/*		 * m >= 2^31-2^7: invalid		 */		d = 0x7fffffff;		if (vsm.sign)			d = ~d;		exceptions |= FPSCR_IOC;	} else if (vsm.exponent >= 127 - 1) {		int shift = 127 + 31 - vsm.exponent;		u32 rem, incr = 0;		/* 2^0 <= m <= 2^31-2^7 */		d = (vsm.significand << 1) >> shift;		rem = vsm.significand << (33 - shift);		if (rmode == FPSCR_ROUND_NEAREST) {			incr = 0x80000000;			if ((d & 1) == 0)				incr -= 1;		} else if (rmode == FPSCR_ROUND_TOZERO) {			incr = 0;		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {			incr = ~0;		}		if ((rem + incr) < rem && d < 0xffffffff)			d += 1;		if (d > 0x7fffffff + (vsm.sign != 0)) {			d = 0x7fffffff + (vsm.sign != 0);			exceptions |= FPSCR_IOC;		} else if (rem)			exceptions |= FPSCR_IXC;		if (vsm.sign)			d = -d;	} else {		d = 0;		if (vsm.exponent | vsm.significand) {			exceptions |= FPSCR_IXC;			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)				d = 1;			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)				d = -1;		}	}	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);	vfp_put_float((s32)d, sd);	return exceptions;}static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr){	return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);}static struct op fops_ext[32] = {	[FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_single_fcpy,   0 },	[FEXT_TO_IDX(FEXT_FABS)]	= { vfp_single_fabs,   0 },	[FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_single_fneg,   0 },	[FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_single_fsqrt,  0 },	[FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_single_fcmp,   OP_SCALAR },	[FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_single_fcmpe,  OP_SCALAR },	[FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_single_fcmpz,  OP_SCALAR },	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_single_fcmpez, OP_SCALAR },	[FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_single_fcvtd,  OP_SCALAR|OP_DD },	[FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_single_fuito,  OP_SCALAR },	[FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_single_fsito,  OP_SCALAR },	[FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_single_ftoui,  OP_SCALAR },	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_single_ftouiz, OP_SCALAR },	[FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_single_ftosi,  OP_SCALAR },	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_single_ftosiz, OP_SCALAR },};static u32vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,			  struct vfp_single *vsm, u32 fpscr){	struct vfp_single *vsp;	u32 exceptions = 0;	int tn, tm;	tn = vfp_single_type(vsn);	tm = vfp_single_type(vsm);	if (tn & tm & VFP_INFINITY) {		/*		 * Two infinities.  Are they different signs?		 */		if (vsn->sign ^ vsm->sign) {			/*			 * different signs -> invalid			 */			exceptions = FPSCR_IOC;			vsp = &vfp_single_default_qnan;		} else {			/*			 * same signs -> valid			 */			vsp = vsn;		}	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {		/*		 * One infinity and one number -> infinity		 */		vsp = vsn;	} else {		/*		 * 'n' is a NaN of some type		 */		return vfp_propagate_nan(vsd, vsn, vsm, fpscr);	}	*vsd = *vsp;	return exceptions;}static u32vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,	       struct vfp_single *vsm, u32 fpscr){	u32 exp_diff, m_sig;	if (vsn->significand & 0x80000000 ||	    vsm->significand & 0x80000000) {		pr_info("VFP: bad FP values in %s\n", __func__);		vfp_single_dump("VSN", vsn);		vfp_single_dump("VSM", vsm);	}	/*	 * Ensure that 'n' is the largest magnitude number.  Note that	 * if 'n' and 'm' have equal exponents, we do not swap them.	 * This ensures that NaN propagation works correctly.	 */	if (vsn->exponent < vsm->exponent) {		struct vfp_single *t = vsn;		vsn = vsm;		vsm = t;	}	/*	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,	 * infinity or a NaN here.	 */	if (vsn->exponent == 255)		return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);	/*	 * We have two proper numbers, where 'vsn' is the larger magnitude.	 *	 * Copy 'n' to 'd' before doing the arithmetic.	 */	*vsd = *vsn;	/*	 * Align both numbers.	 */	exp_diff = vsn->exponent - vsm->exponent;	m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);	/*	 * If the signs are different, we are really subtracting.	 */	if (vsn->sign ^ vsm->sign) {		m_sig = vsn->significand - m_sig;		if ((s32)m_sig < 0) {			vsd->sign = vfp_sign_negate(vsd->sign);			m_sig = -m_sig;		} else if (m_sig == 0) {			vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;		}	} else {		m_sig = vsn->significand + m_sig;	}	vsd->significand = m_sig;	return 0;}static u32vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr){	vfp_single_dump("VSN", vsn);	vfp_single_dump("VSM", vsm);	/*	 * Ensure that 'n' is the largest magnitude number.  Note that	 * if 'n' and 'm' have equal exponents, we do not swap them.	 * This ensures that NaN propagation works correctly.	 */	if (vsn->exponent < vsm->exponent) {		struct vfp_single *t = vsn;		vsn = vsm;		vsm = t;		pr_debug("VFP: swapping M <-> N\n");	}	vsd->sign = vsn->sign ^ vsm->sign;	/*	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.	 */	if (vsn->exponent == 255) {		if (vsn->significand || (vsm->exponent == 255 && vsm->significand))			return vfp_propagate_nan(vsd, vsn, vsm, fpscr);		if ((vsm->exponent | vsm->significand) == 0) {			*vsd = vfp_single_default_qnan;			return FPSCR_IOC;		}		vsd->exponent = vsn->exponent;		vsd->significand = 0;		return 0;	}	/*	 * If 'm' is zero, the result is always zero.  In this case,	 * 'n' may be zero or a number, but it doesn't matter which.	 */	if ((vsm->exponent | vsm->significand) == 0) {		vsd->exponent = 0;		vsd->significand = 0;		return 0;	}	/*	 * We add 2 to the destination exponent for the same reason as	 * the addition case - though this time we have +1 from each	 * input operand.	 */	vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;	vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);	vfp_single_dump("VSD", vsd);	return 0;}#define NEG_MULTIPLY	(1 << 0)#define NEG_SUBTRACT	(1 << 1)static u32vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func){	struct vfp_single vsd, vsp, vsn, vsm;	u32 exceptions;	s32 v;	v = vfp_get_float(sn);	pr_debug("VFP: s%u = %08x\n", sn, v);	vfp_single_unpack(&vsn, v);	if (vsn.exponent == 0 && vsn.significand)		vfp_single_normalise_denormal(&vsn);	vfp_single_unpack(&vsm, m);	if (vsm.exponent == 0 && vsm.significand)		vfp_single_normalise_denormal(&vsm);	exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);	if (negate & NEG_MULTIPLY)		vsp.sign = vfp_sign_negate(vsp.sign);	v = vfp_get_float(sd);	pr_debug("VFP: s%u = %08x\n", sd, v);	vfp_single_unpack(&vsn, v);	if (negate & NEG_SUBTRACT)		vsn.sign = vfp_sign_negate(vsn.sign);	exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);}/* * Standard operations *//* * sd = sd + (sn * sm) */static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr){	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");}/* * sd = sd - (sn * sm) */static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr){	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");}/* * sd = -sd + (sn * sm) */static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr){	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");}/* * sd = -sd - (sn * sm) */static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr){	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");}/* * sd = sn * sm */static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr){	struct vfp_single vsd, vsn, vsm;	u32 exceptions;	s32 n = vfp_get_float(sn);	pr_debug("VFP: s%u = %08x\n", sn, n);	vfp_single_unpack(&vsn, n);	if (vsn.exponent == 0 && vsn.significand)		vfp_single_normalise_denormal(&vsn);	vfp_single_unpack(&vsm, m);	if (vsm.exponent == 0 && vsm.significand)		vfp_single_normalise_denormal(&vsm);	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");}/* * sd = -(sn * sm) */static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr){	struct vfp_single vsd, vsn, vsm;	u32 exceptions;	s32 n = vfp_get_float(sn);	pr_debug("VFP: s%u = %08x\n", sn, n);	vfp_single_unpack(&vsn, n);	if (vsn.exponent == 0 && vsn.significand)		vfp_single_normalise_denormal(&vsn);	vfp_single_unpack(&vsm, m);	if (vsm.exponent == 0 && vsm.significand)		vfp_single_normalise_denormal(&vsm);	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);	vsd.sign = vfp_sign_negate(vsd.sign);	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");}/* * sd = sn + sm */static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr){	struct vfp_single vsd, vsn, vsm;	u32 exceptions;	s32 n = vfp_get_float(sn);	pr_debug("VFP: s%u = %08x\n", sn, n);	/*	 * Unpack and normalise denormals.	 */	vfp_single_unpack(&vsn, n);	if (vsn.exponent == 0 && vsn.significand)		vfp_single_normalise_denormal(&vsn);	vfp_single_unpack(&vsm, m);	if (vsm.exponent == 0 && vsm.significand)		vfp_single_normalise_denormal(&vsm);	exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");}/* * sd = sn - sm */static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr){	/*	 * Subtraction is addition with one sign inverted.	 */	return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);}/* * sd = sn / sm */static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr){	struct vfp_single vsd, vsn, vsm;	u32 exceptions = 0;	s32 n = vfp_get_float(sn);	int tm, tn;	pr_debug("VFP: s%u = %08x\n", sn, n);	vfp_single_unpack(&vsn, n);	vfp_single_unpack(&vsm, m);	vsd.sign = vsn.sign ^ vsm.sign;	tn = vfp_single_type(&vsn);	tm = vfp_single_type(&vsm);	/*	 * Is n a NAN?	 */	if (tn & VFP_NAN)		goto vsn_nan;	/*	 * Is m a NAN?	 */	if (tm & VFP_NAN)		goto vsm_nan;	/*	 * If n and m are infinity, the result is invalid	 * If n and m are zero, the result is invalid	 */	if (tm & tn & (VFP_INFINITY|VFP_ZERO))		goto invalid;	/*	 * If n is infinity, the result is infinity	 */	if (tn & VFP_INFINITY)		goto infinity;	/*	 * If m is zero, raise div0 exception	 */	if (tm & VFP_ZERO)		goto divzero;	/*	 * If m is infinity, or n is zero, the result is zero	 */	if (tm & VFP_INFINITY || tn & VFP_ZERO)		goto zero;	if (tn & VFP_DENORMAL)		vfp_single_normalise_denormal(&vsn);	if (tm & VFP_DENORMAL)		vfp_single_normalise_denormal(&vsm);	/*	 * Ok, we have two numbers, we can perform division.	 */	vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;	vsm.significand <<= 1;	if (vsm.significand <= (2 * vsn.significand)) {		vsn.significand >>= 1;		vsd.exponent++;	}	{		u64 significand = (u64)vsn.significand << 32;		do_div(significand, vsm.significand);		vsd.significand = significand;	}	if ((vsd.significand & 0x3f) == 0)		vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv"); vsn_nan:	exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr); pack:	vfp_put_float(vfp_single_pack(&vsd), sd);	return exceptions; vsm_nan:	exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);	goto pack; zero:	vsd.exponent = 0;	vsd.significand = 0;	goto pack; divzero:	exceptions = FPSCR_DZC; infinity:	vsd.exponent = 255;	vsd.significand = 0;	goto pack; invalid:	vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd);	return FPSCR_IOC;}static struct op fops[16] = {	[FOP_TO_IDX(FOP_FMAC)]	= { vfp_single_fmac,  0 },	[FOP_TO_IDX(FOP_FNMAC)]	= { vfp_single_fnmac, 0 },	[FOP_TO_IDX(FOP_FMSC)]	= { vfp_single_fmsc,  0 },	[FOP_TO_IDX(FOP_FNMSC)]	= { vfp_single_fnmsc, 0 },	[FOP_TO_IDX(FOP_FMUL)]	= { vfp_single_fmul,  0 },	[FOP_TO_IDX(FOP_FNMUL)]	= { vfp_single_fnmul, 0 },	[FOP_TO_IDX(FOP_FADD)]	= { vfp_single_fadd,  0 },	[FOP_TO_IDX(FOP_FSUB)]	= { vfp_single_fsub,  0 },	[FOP_TO_IDX(FOP_FDIV)]	= { vfp_single_fdiv,  0 },};#define FREG_BANK(x)	((x) & 0x18)#define FREG_IDX(x)	((x) & 7)u32 vfp_single_cpdo(u32 inst, u32 fpscr){	u32 op = inst & FOP_MASK;	u32 exceptions = 0;	unsigned int dest;	unsigned int sn = vfp_get_sn(inst);	unsigned int sm = vfp_get_sm(inst);	unsigned int vecitr, veclen, vecstride;	struct op *fop;	vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);	fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];	/*	 * fcvtsd takes a dN register number as destination, not sN.	 * Technically, if bit 0 of dd is set, this is an invalid	 * instruction.  However, we ignore this for efficiency.	 * It also only operates on scalars.	 */	if (fop->flags & OP_DD)		dest = vfp_get_dd(inst);	else		dest = vfp_get_sd(inst);	/*	 * If destination bank is zero, vector length is always '1'.	 * ARM DDI0100F C5.1.3, C5.3.2.	 */	if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)		veclen = 0;	else		veclen = fpscr & FPSCR_LENGTH_MASK;	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,		 (veclen >> FPSCR_LENGTH_BIT) + 1);	if (!fop->fn)		goto invalid;	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {		s32 m = vfp_get_float(sm);		u32 except;		char type;		type = fop->flags & OP_DD ? 'd' : 's';		if (op == FOP_EXT)			pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n",				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,				 sm, m);		else			pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n",				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,				 FOP_TO_IDX(op), sm, m);		except = fop->fn(dest, sn, m, fpscr);		pr_debug("VFP: itr%d: exceptions=%08x\n",			 vecitr >> FPSCR_LENGTH_BIT, except);		exceptions |= except;		/*		 * CHECK: It appears to be undefined whether we stop when		 * we encounter an exception.  We continue.		 */		dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);		sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);		if (FREG_BANK(sm) != 0)			sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);	}	return exceptions; invalid:	return (u32)-1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -