⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 uengine.c

📁 linux 内核源代码
💻 C
字号:
/* * Generic library functions for the microengines found on the Intel * IXP2000 series of network processors. * * Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org> * Dedicated to Marija Kulikova. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of the * License, or (at your option) any later version. */#include <linux/kernel.h>#include <linux/init.h>#include <linux/slab.h>#include <linux/module.h>#include <linux/string.h>#include <asm/hardware.h>#include <asm/arch/hardware.h>#include <asm/hardware/uengine.h>#include <asm/io.h>#if defined(CONFIG_ARCH_IXP2000)#define IXP_UENGINE_CSR_VIRT_BASE	IXP2000_UENGINE_CSR_VIRT_BASE#define IXP_PRODUCT_ID			IXP2000_PRODUCT_ID#define IXP_MISC_CONTROL		IXP2000_MISC_CONTROL#define IXP_RESET1			IXP2000_RESET1#else#if defined(CONFIG_ARCH_IXP23XX)#define IXP_UENGINE_CSR_VIRT_BASE	IXP23XX_UENGINE_CSR_VIRT_BASE#define IXP_PRODUCT_ID			IXP23XX_PRODUCT_ID#define IXP_MISC_CONTROL		IXP23XX_MISC_CONTROL#define IXP_RESET1			IXP23XX_RESET1#else#error unknown platform#endif#endif#define USTORE_ADDRESS			0x000#define USTORE_DATA_LOWER		0x004#define USTORE_DATA_UPPER		0x008#define CTX_ENABLES			0x018#define CC_ENABLE			0x01c#define CSR_CTX_POINTER			0x020#define INDIRECT_CTX_STS		0x040#define ACTIVE_CTX_STS			0x044#define INDIRECT_CTX_SIG_EVENTS		0x048#define INDIRECT_CTX_WAKEUP_EVENTS	0x050#define NN_PUT				0x080#define NN_GET				0x084#define TIMESTAMP_LOW			0x0c0#define TIMESTAMP_HIGH			0x0c4#define T_INDEX_BYTE_INDEX		0x0f4#define LOCAL_CSR_STATUS		0x180u32 ixp2000_uengine_mask;static void *ixp2000_uengine_csr_area(int uengine){	return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10);}/* * LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR * space means that the microengine we tried to access was also trying * to access its own CSR space on the same clock cycle as we did.  When * this happens, we lose the arbitration process by default, and the * read or write we tried to do was not actually performed, so we try * again until it succeeds. */u32 ixp2000_uengine_csr_read(int uengine, int offset){	void *uebase;	u32 *local_csr_status;	u32 *reg;	u32 value;	uebase = ixp2000_uengine_csr_area(uengine);	local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);	reg = (u32 *)(uebase + offset);	do {		value = ixp2000_reg_read(reg);	} while (ixp2000_reg_read(local_csr_status) & 1);	return value;}EXPORT_SYMBOL(ixp2000_uengine_csr_read);void ixp2000_uengine_csr_write(int uengine, int offset, u32 value){	void *uebase;	u32 *local_csr_status;	u32 *reg;	uebase = ixp2000_uengine_csr_area(uengine);	local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);	reg = (u32 *)(uebase + offset);	do {		ixp2000_reg_write(reg, value);	} while (ixp2000_reg_read(local_csr_status) & 1);}EXPORT_SYMBOL(ixp2000_uengine_csr_write);void ixp2000_uengine_reset(u32 uengine_mask){	u32 value;	value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask;	uengine_mask &= ixp2000_uengine_mask;	ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask);	ixp2000_reg_wrb(IXP_RESET1, value);}EXPORT_SYMBOL(ixp2000_uengine_reset);void ixp2000_uengine_set_mode(int uengine, u32 mode){	/*	 * CTL_STR_PAR_EN: unconditionally enable parity checking on	 * control store.	 */	mode |= 0x10000000;	ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode);	/*	 * Enable updating of condition codes.	 */	ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000);	/*	 * Initialise other per-microengine registers.	 */	ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00);	ixp2000_uengine_csr_write(uengine, NN_GET, 0x00);	ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0);}EXPORT_SYMBOL(ixp2000_uengine_set_mode);static int make_even_parity(u32 x){	return hweight32(x) & 1;}static void ustore_write(int uengine, u64 insn){	/*	 * Generate even parity for top and bottom 20 bits.	 */	insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41;	insn |= (u64)make_even_parity(insn & 0x000fffff) << 40;	/*	 * Write to microstore.  The second write auto-increments	 * the USTORE_ADDRESS index register.	 */	ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn);	ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32));}void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns){	int i;	/*	 * Start writing to microstore at address 0.	 */	ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000);	for (i = 0; i < insns; i++) {		u64 insn;		insn = (((u64)ucode[0]) << 32) |			(((u64)ucode[1]) << 24) |			(((u64)ucode[2]) << 16) |			(((u64)ucode[3]) << 8) |			((u64)ucode[4]);		ucode += 5;		ustore_write(uengine, insn);	}	/* 	 * Pad with a few NOPs at the end (to avoid the microengine	 * aborting as it prefetches beyond the last instruction), unless	 * we run off the end of the instruction store first, at which	 * point the address register will wrap back to zero.	 */	for (i = 0; i < 4; i++) {		u32 addr;		addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS);		if (addr == 0x80000000)			break;		ustore_write(uengine, 0xf0000c0300ULL);	}	/*	 * End programming.	 */	ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000);}EXPORT_SYMBOL(ixp2000_uengine_load_microcode);void ixp2000_uengine_init_context(int uengine, int context, int pc){	/*	 * Select the right context for indirect access.	 */	ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context);	/*	 * Initialise signal masks to immediately go to Ready state.	 */	ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1);	ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1);	/*	 * Set program counter.	 */	ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc);}EXPORT_SYMBOL(ixp2000_uengine_init_context);void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask){	u32 mask;	/*	 * Enable the specified context to go to Executing state.	 */	mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);	mask |= ctx_mask << 8;	ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);}EXPORT_SYMBOL(ixp2000_uengine_start_contexts);void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask){	u32 mask;	/*	 * Disable the Ready->Executing transition.  Note that this	 * does not stop the context until it voluntarily yields.	 */	mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);	mask &= ~(ctx_mask << 8);	ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);}EXPORT_SYMBOL(ixp2000_uengine_stop_contexts);static int check_ixp_type(struct ixp2000_uengine_code *c){	u32 product_id;	u32 rev;	product_id = ixp2000_reg_read(IXP_PRODUCT_ID);	if (((product_id >> 16) & 0x1f) != 0)		return 0;	switch ((product_id >> 8) & 0xff) {#ifdef CONFIG_ARCH_IXP2000	case 0:		/* IXP2800 */		if (!(c->cpu_model_bitmask & 4))			return 0;		break;	case 1:		/* IXP2850 */		if (!(c->cpu_model_bitmask & 8))			return 0;		break;	case 2:		/* IXP2400 */		if (!(c->cpu_model_bitmask & 2))			return 0;		break;#endif#ifdef CONFIG_ARCH_IXP23XX	case 4:		/* IXP23xx */		if (!(c->cpu_model_bitmask & 0x3f0))			return 0;		break;#endif	default:		return 0;	}	rev = product_id & 0xff;	if (rev < c->cpu_min_revision || rev > c->cpu_max_revision)		return 0;	return 1;}static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b){	int offset;	int i;	offset = 0;	for (i = 0; i < 128; i++) {		u8 b3;		u8 b2;		u8 b1;		u8 b0;		b3 = (gpr_a[i] >> 24) & 0xff;		b2 = (gpr_a[i] >> 16) & 0xff;		b1 = (gpr_a[i] >> 8) & 0xff;		b0 = gpr_a[i] & 0xff;		// immed[@ai, (b1 << 8) | b0]		// 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII		ucode[offset++] = 0xf0;		ucode[offset++] = (b1 >> 4);		ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6);		ucode[offset++] = (b0 << 2);		ucode[offset++] = 0x80 | i;		// immed_w1[@ai, (b3 << 8) | b2]		// 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII		ucode[offset++] = 0xf4;		ucode[offset++] = 0x40 | (b3 >> 4);		ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6);		ucode[offset++] = (b2 << 2);		ucode[offset++] = 0x80 | i;	}	for (i = 0; i < 128; i++) {		u8 b3;		u8 b2;		u8 b1;		u8 b0;		b3 = (gpr_b[i] >> 24) & 0xff;		b2 = (gpr_b[i] >> 16) & 0xff;		b1 = (gpr_b[i] >> 8) & 0xff;		b0 = gpr_b[i] & 0xff;		// immed[@bi, (b1 << 8) | b0]		// 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV		ucode[offset++] = 0xf0;		ucode[offset++] = (b1 >> 4);		ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6);		ucode[offset++] = (i << 2) | 0x03;		ucode[offset++] = b0;		// immed_w1[@bi, (b3 << 8) | b2]		// 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV		ucode[offset++] = 0xf4;		ucode[offset++] = 0x40 | (b3 >> 4);		ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6);		ucode[offset++] = (i << 2) | 0x03;		ucode[offset++] = b2;	}	// ctx_arb[kill]	ucode[offset++] = 0xe0;	ucode[offset++] = 0x00;	ucode[offset++] = 0x01;	ucode[offset++] = 0x00;	ucode[offset++] = 0x00;}static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c){	int per_ctx_regs;	u32 *gpr_a;	u32 *gpr_b;	u8 *ucode;	int i;	gpr_a = kzalloc(128 * sizeof(u32), GFP_KERNEL);	gpr_b = kzalloc(128 * sizeof(u32), GFP_KERNEL);	ucode = kmalloc(513 * 5, GFP_KERNEL);	if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) {		kfree(ucode);		kfree(gpr_b);		kfree(gpr_a);		return 1;	}	per_ctx_regs = 16;	if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS)		per_ctx_regs = 32;	for (i = 0; i < 256; i++) {		struct ixp2000_reg_value *r = c->initial_reg_values + i;		u32 *bank;		int inc;		int j;		if (r->reg == -1)			break;		bank = (r->reg & 0x400) ? gpr_b : gpr_a;		inc = (r->reg & 0x80) ? 128 : per_ctx_regs;		j = r->reg & 0x7f;		while (j < 128) {			bank[j] = r->value;			j += inc;		}	}	generate_ucode(ucode, gpr_a, gpr_b);	ixp2000_uengine_load_microcode(uengine, ucode, 513);	ixp2000_uengine_init_context(uengine, 0, 0);	ixp2000_uengine_start_contexts(uengine, 0x01);	for (i = 0; i < 100; i++) {		u32 status;		status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS);		if (!(status & 0x80000000))			break;	}	ixp2000_uengine_stop_contexts(uengine, 0x01);	kfree(ucode);	kfree(gpr_b);	kfree(gpr_a);	return !!(i == 100);}int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c){	int ctx;	if (!check_ixp_type(c))		return 1;	if (!(ixp2000_uengine_mask & (1 << uengine)))		return 1;	ixp2000_uengine_reset(1 << uengine);	ixp2000_uengine_set_mode(uengine, c->uengine_parameters);	if (set_initial_registers(uengine, c))		return 1;	ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns);	for (ctx = 0; ctx < 8; ctx++)		ixp2000_uengine_init_context(uengine, ctx, 0);	return 0;}EXPORT_SYMBOL(ixp2000_uengine_load);static int __init ixp2000_uengine_init(void){	int uengine;	u32 value;	/*	 * Determine number of microengines present.	 */	switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) {#ifdef CONFIG_ARCH_IXP2000	case 0:		/* IXP2800 */	case 1:		/* IXP2850 */		ixp2000_uengine_mask = 0x00ff00ff;		break;	case 2:		/* IXP2400 */		ixp2000_uengine_mask = 0x000f000f;		break;#endif#ifdef CONFIG_ARCH_IXP23XX	case 4:		/* IXP23xx */		ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf;		break;#endif	default:		printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",			(unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID));		ixp2000_uengine_mask = 0x00000000;		break;	}	/*	 * Reset microengines.	 */	ixp2000_uengine_reset(ixp2000_uengine_mask);	/*	 * Synchronise timestamp counters across all microengines.	 */	value = ixp2000_reg_read(IXP_MISC_CONTROL);	ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80);	for (uengine = 0; uengine < 32; uengine++) {		if (ixp2000_uengine_mask & (1 << uengine)) {			ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);			ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);		}	}	ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80);	return 0;}subsys_initcall(ixp2000_uengine_init);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -