⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dmabounce.c

📁 linux 内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *  arch/arm/common/dmabounce.c * *  Special dma_{map/unmap/dma_sync}_* routines for systems that have *  limited DMA windows. These functions utilize bounce buffers to *  copy data to/from buffers located outside the DMA region. This *  only works for systems in which DMA memory is at the bottom of *  RAM, the remainder of memory is at the top and the DMA memory *  can be marked as ZONE_DMA. Anything beyond that such as discontiguous *  DMA windows will require custom implementations that reserve memory *  areas at early bootup. * *  Original version by Brad Parker (brad@heeltoe.com) *  Re-written by Christopher Hoover <ch@murgatroid.com> *  Made generic by Deepak Saxena <dsaxena@plexity.net> * *  Copyright (C) 2002 Hewlett Packard Company. *  Copyright (C) 2004 MontaVista Software, Inc. * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License *  version 2 as published by the Free Software Foundation. */#include <linux/module.h>#include <linux/init.h>#include <linux/slab.h>#include <linux/device.h>#include <linux/dma-mapping.h>#include <linux/dmapool.h>#include <linux/list.h>#include <linux/scatterlist.h>#include <asm/cacheflush.h>#undef STATS#ifdef STATS#define DO_STATS(X) do { X ; } while (0)#else#define DO_STATS(X) do { } while (0)#endif/* ************************************************** */struct safe_buffer {	struct list_head node;	/* original request */	void		*ptr;	size_t		size;	int		direction;	/* safe buffer info */	struct dmabounce_pool *pool;	void		*safe;	dma_addr_t	safe_dma_addr;};struct dmabounce_pool {	unsigned long	size;	struct dma_pool	*pool;#ifdef STATS	unsigned long	allocs;#endif};struct dmabounce_device_info {	struct device *dev;	struct list_head safe_buffers;#ifdef STATS	unsigned long total_allocs;	unsigned long map_op_count;	unsigned long bounce_count;	int attr_res;#endif	struct dmabounce_pool	small;	struct dmabounce_pool	large;	rwlock_t lock;};#ifdef STATSstatic ssize_t dmabounce_show(struct device *dev, struct device_attribute *attr,			      char *buf){	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;	return sprintf(buf, "%lu %lu %lu %lu %lu %lu\n",		device_info->small.allocs,		device_info->large.allocs,		device_info->total_allocs - device_info->small.allocs -			device_info->large.allocs,		device_info->total_allocs,		device_info->map_op_count,		device_info->bounce_count);}static DEVICE_ATTR(dmabounce_stats, 0400, dmabounce_show, NULL);#endif/* allocate a 'safe' buffer and keep track of it */static inline struct safe_buffer *alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,		  size_t size, enum dma_data_direction dir){	struct safe_buffer *buf;	struct dmabounce_pool *pool;	struct device *dev = device_info->dev;	unsigned long flags;	dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",		__func__, ptr, size, dir);	if (size <= device_info->small.size) {		pool = &device_info->small;	} else if (size <= device_info->large.size) {		pool = &device_info->large;	} else {		pool = NULL;	}	buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);	if (buf == NULL) {		dev_warn(dev, "%s: kmalloc failed\n", __func__);		return NULL;	}	buf->ptr = ptr;	buf->size = size;	buf->direction = dir;	buf->pool = pool;	if (pool) {		buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,					   &buf->safe_dma_addr);	} else {		buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,					       GFP_ATOMIC);	}	if (buf->safe == NULL) {		dev_warn(dev,			 "%s: could not alloc dma memory (size=%d)\n",			 __func__, size);		kfree(buf);		return NULL;	}#ifdef STATS	if (pool)		pool->allocs++;	device_info->total_allocs++;#endif	write_lock_irqsave(&device_info->lock, flags);	list_add(&buf->node, &device_info->safe_buffers);	write_unlock_irqrestore(&device_info->lock, flags);	return buf;}/* determine if a buffer is from our "safe" pool */static inline struct safe_buffer *find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr){	struct safe_buffer *b, *rb = NULL;	unsigned long flags;	read_lock_irqsave(&device_info->lock, flags);	list_for_each_entry(b, &device_info->safe_buffers, node)		if (b->safe_dma_addr == safe_dma_addr) {			rb = b;			break;		}	read_unlock_irqrestore(&device_info->lock, flags);	return rb;}static inline voidfree_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf){	unsigned long flags;	dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);	write_lock_irqsave(&device_info->lock, flags);	list_del(&buf->node);	write_unlock_irqrestore(&device_info->lock, flags);	if (buf->pool)		dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);	else		dma_free_coherent(device_info->dev, buf->size, buf->safe,				    buf->safe_dma_addr);	kfree(buf);}/* ************************************************** */static inline dma_addr_tmap_single(struct device *dev, void *ptr, size_t size,		enum dma_data_direction dir){	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;	dma_addr_t dma_addr;	int needs_bounce = 0;	if (device_info)		DO_STATS ( device_info->map_op_count++ );	dma_addr = virt_to_dma(dev, ptr);	if (dev->dma_mask) {		unsigned long mask = *dev->dma_mask;		unsigned long limit;		limit = (mask + 1) & ~mask;		if (limit && size > limit) {			dev_err(dev, "DMA mapping too big (requested %#x "				"mask %#Lx)\n", size, *dev->dma_mask);			return ~0;		}		/*		 * Figure out if we need to bounce from the DMA mask.		 */		needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;	}	if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {		struct safe_buffer *buf;		buf = alloc_safe_buffer(device_info, ptr, size, dir);		if (buf == 0) {			dev_err(dev, "%s: unable to map unsafe buffer %p!\n",			       __func__, ptr);			return 0;		}		dev_dbg(dev,			"%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",			__func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),			buf->safe, (void *) buf->safe_dma_addr);		if ((dir == DMA_TO_DEVICE) ||		    (dir == DMA_BIDIRECTIONAL)) {			dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",				__func__, ptr, buf->safe, size);			memcpy(buf->safe, ptr, size);		}		ptr = buf->safe;		dma_addr = buf->safe_dma_addr;	} else {		/*		 * We don't need to sync the DMA buffer since		 * it was allocated via the coherent allocators.		 */		dma_cache_maint(ptr, size, dir);	}	return dma_addr;}static inline voidunmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,		enum dma_data_direction dir){	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;	struct safe_buffer *buf = NULL;	/*	 * Trying to unmap an invalid mapping	 */	if (dma_mapping_error(dma_addr)) {		dev_err(dev, "Trying to unmap invalid mapping\n");		return;	}	if (device_info)		buf = find_safe_buffer(device_info, dma_addr);	if (buf) {		BUG_ON(buf->size != size);		dev_dbg(dev,			"%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",			__func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),			buf->safe, (void *) buf->safe_dma_addr);		DO_STATS ( device_info->bounce_count++ );		if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {			void *ptr = buf->ptr;			dev_dbg(dev,				"%s: copy back safe %p to unsafe %p size %d\n",				__func__, buf->safe, ptr, size);			memcpy(ptr, buf->safe, size);			/*			 * DMA buffers must have the same cache properties			 * as if they were really used for DMA - which means			 * data must be written back to RAM.  Note that			 * we don't use dmac_flush_range() here for the			 * bidirectional case because we know the cache			 * lines will be coherent with the data written.			 */			dmac_clean_range(ptr, ptr + size);			outer_clean_range(__pa(ptr), __pa(ptr) + size);		}		free_safe_buffer(device_info, buf);	}}static inline voidsync_single(struct device *dev, dma_addr_t dma_addr, size_t size,		enum dma_data_direction dir){	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;	struct safe_buffer *buf = NULL;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -