⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fault-armv.c

📁 linux 内核源代码
💻 C
字号:
/* *  linux/arch/arm/mm/fault-armv.c * *  Copyright (C) 1995  Linus Torvalds *  Modifications for ARM processor (c) 1995-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/module.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/mm.h>#include <linux/bitops.h>#include <linux/vmalloc.h>#include <linux/init.h>#include <linux/pagemap.h>#include <asm/cacheflush.h>#include <asm/pgtable.h>#include <asm/tlbflush.h>static unsigned long shared_pte_mask = L_PTE_CACHEABLE;/* * We take the easy way out of this problem - we make the * PTE uncacheable.  However, we leave the write buffer on. * * Note that the pte lock held when calling update_mmu_cache must also * guard the pte (somewhere else in the same mm) that we modify here. * Therefore those configurations which might call adjust_pte (those * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. */static int adjust_pte(struct vm_area_struct *vma, unsigned long address){	pgd_t *pgd;	pmd_t *pmd;	pte_t *pte, entry;	int ret = 0;	pgd = pgd_offset(vma->vm_mm, address);	if (pgd_none(*pgd))		goto no_pgd;	if (pgd_bad(*pgd))		goto bad_pgd;	pmd = pmd_offset(pgd, address);	if (pmd_none(*pmd))		goto no_pmd;	if (pmd_bad(*pmd))		goto bad_pmd;	pte = pte_offset_map(pmd, address);	entry = *pte;	/*	 * If this page isn't present, or is already setup to	 * fault (ie, is old), we can safely ignore any issues.	 */	if (pte_present(entry) && pte_val(entry) & shared_pte_mask) {		flush_cache_page(vma, address, pte_pfn(entry));		pte_val(entry) &= ~shared_pte_mask;		set_pte_at(vma->vm_mm, address, pte, entry);		flush_tlb_page(vma, address);		ret = 1;	}	pte_unmap(pte);	return ret;bad_pgd:	pgd_ERROR(*pgd);	pgd_clear(pgd);no_pgd:	return 0;bad_pmd:	pmd_ERROR(*pmd);	pmd_clear(pmd);no_pmd:	return 0;}static voidmake_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn){	struct mm_struct *mm = vma->vm_mm;	struct vm_area_struct *mpnt;	struct prio_tree_iter iter;	unsigned long offset;	pgoff_t pgoff;	int aliases = 0;	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);	/*	 * If we have any shared mappings that are in the same mm	 * space, then we need to handle them specially to maintain	 * cache coherency.	 */	flush_dcache_mmap_lock(mapping);	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {		/*		 * If this VMA is not in our MM, we can ignore it.		 * Note that we intentionally mask out the VMA		 * that we are fixing up.		 */		if (mpnt->vm_mm != mm || mpnt == vma)			continue;		if (!(mpnt->vm_flags & VM_MAYSHARE))			continue;		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;		aliases += adjust_pte(mpnt, mpnt->vm_start + offset);	}	flush_dcache_mmap_unlock(mapping);	if (aliases)		adjust_pte(vma, addr);	else		flush_cache_page(vma, addr, pfn);}/* * Take care of architecture specific things when placing a new PTE into * a page table, or changing an existing PTE.  Basically, there are two * things that we need to take care of: * *  1. If PG_dcache_dirty is set for the page, we need to ensure *     that any cache entries for the kernels virtual memory *     range are written back to the page. *  2. If we have multiple shared mappings of the same space in *     an object, we need to deal with the cache aliasing issues. * * Note that the pte lock will be held. */void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte){	unsigned long pfn = pte_pfn(pte);	struct address_space *mapping;	struct page *page;	if (!pfn_valid(pfn))		return;	page = pfn_to_page(pfn);	mapping = page_mapping(page);	if (mapping) {		int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);		if (dirty)			__flush_dcache_page(mapping, page);		if (cache_is_vivt())			make_coherent(mapping, vma, addr, pfn);	}}/* * Check whether the write buffer has physical address aliasing * issues.  If it has, we need to avoid them for the case where * we have several shared mappings of the same object in user * space. */static int __init check_writebuffer(unsigned long *p1, unsigned long *p2){	register unsigned long zero = 0, one = 1, val;	local_irq_disable();	mb();	*p1 = one;	mb();	*p2 = zero;	mb();	val = *p1;	mb();	local_irq_enable();	return val != zero;}void __init check_writebuffer_bugs(void){	struct page *page;	const char *reason;	unsigned long v = 1;	printk(KERN_INFO "CPU: Testing write buffer coherency: ");	page = alloc_page(GFP_KERNEL);	if (page) {		unsigned long *p1, *p2;		pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|					 L_PTE_DIRTY|L_PTE_WRITE|					 L_PTE_BUFFERABLE);		p1 = vmap(&page, 1, VM_IOREMAP, prot);		p2 = vmap(&page, 1, VM_IOREMAP, prot);		if (p1 && p2) {			v = check_writebuffer(p1, p2);			reason = "enabling work-around";		} else {			reason = "unable to map memory\n";		}		vunmap(p1);		vunmap(p2);		put_page(page);	} else {		reason = "unable to grab page\n";	}	if (v) {		printk("failed, %s\n", reason);		shared_pte_mask |= L_PTE_BUFFERABLE;	} else {		printk("ok\n");	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -