⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 setup.c

📁 linux 内核源代码
💻 C
字号:
/* * Copyright (C) 2004-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/clk.h>#include <linux/init.h>#include <linux/initrd.h>#include <linux/sched.h>#include <linux/console.h>#include <linux/ioport.h>#include <linux/bootmem.h>#include <linux/fs.h>#include <linux/module.h>#include <linux/pfn.h>#include <linux/root_dev.h>#include <linux/cpu.h>#include <linux/kernel.h>#include <asm/sections.h>#include <asm/processor.h>#include <asm/pgtable.h>#include <asm/setup.h>#include <asm/sysreg.h>#include <asm/arch/board.h>#include <asm/arch/init.h>extern int root_mountflags;/* * Initialize loops_per_jiffy as 5000000 (500MIPS). * Better make it too large than too small... */struct avr32_cpuinfo boot_cpu_data = {	.loops_per_jiffy = 5000000};EXPORT_SYMBOL(boot_cpu_data);static char __initdata command_line[COMMAND_LINE_SIZE];/* * Standard memory resources */static struct resource __initdata kernel_data = {	.name	= "Kernel data",	.start	= 0,	.end	= 0,	.flags	= IORESOURCE_MEM,};static struct resource __initdata kernel_code = {	.name	= "Kernel code",	.start	= 0,	.end	= 0,	.flags	= IORESOURCE_MEM,	.sibling = &kernel_data,};/* * Available system RAM and reserved regions as singly linked * lists. These lists are traversed using the sibling pointer in * struct resource and are kept sorted at all times. */static struct resource *__initdata system_ram;static struct resource *__initdata reserved = &kernel_code;/* * We need to allocate these before the bootmem allocator is up and * running, so we need this "cache". 32 entries are probably enough * for all but the most insanely complex systems. */static struct resource __initdata res_cache[32];static unsigned int __initdata res_cache_next_free;static void __init resource_init(void){	struct resource *mem, *res;	struct resource *new;	kernel_code.start = __pa(init_mm.start_code);	for (mem = system_ram; mem; mem = mem->sibling) {		new = alloc_bootmem_low(sizeof(struct resource));		memcpy(new, mem, sizeof(struct resource));		new->sibling = NULL;		if (request_resource(&iomem_resource, new))			printk(KERN_WARNING "Bad RAM resource %08x-%08x\n",			       mem->start, mem->end);	}	for (res = reserved; res; res = res->sibling) {		new = alloc_bootmem_low(sizeof(struct resource));		memcpy(new, res, sizeof(struct resource));		new->sibling = NULL;		if (insert_resource(&iomem_resource, new))			printk(KERN_WARNING			       "Bad reserved resource %s (%08x-%08x)\n",			       res->name, res->start, res->end);	}}static void __initadd_physical_memory(resource_size_t start, resource_size_t end){	struct resource *new, *next, **pprev;	for (pprev = &system_ram, next = system_ram; next;	     pprev = &next->sibling, next = next->sibling) {		if (end < next->start)			break;		if (start <= next->end) {			printk(KERN_WARNING			       "Warning: Physical memory map is broken\n");			printk(KERN_WARNING			       "Warning: %08x-%08x overlaps %08x-%08x\n",			       start, end, next->start, next->end);			return;		}	}	if (res_cache_next_free >= ARRAY_SIZE(res_cache)) {		printk(KERN_WARNING		       "Warning: Failed to add physical memory %08x-%08x\n",		       start, end);		return;	}	new = &res_cache[res_cache_next_free++];	new->start = start;	new->end = end;	new->name = "System RAM";	new->flags = IORESOURCE_MEM;	*pprev = new;}static int __initadd_reserved_region(resource_size_t start, resource_size_t end,		    const char *name){	struct resource *new, *next, **pprev;	if (end < start)		return -EINVAL;	if (res_cache_next_free >= ARRAY_SIZE(res_cache))		return -ENOMEM;	for (pprev = &reserved, next = reserved; next;	     pprev = &next->sibling, next = next->sibling) {		if (end < next->start)			break;		if (start <= next->end)			return -EBUSY;	}	new = &res_cache[res_cache_next_free++];	new->start = start;	new->end = end;	new->name = name;	new->flags = IORESOURCE_MEM;	*pprev = new;	return 0;}static unsigned long __initfind_free_region(const struct resource *mem, resource_size_t size,		 resource_size_t align){	struct resource *res;	unsigned long target;	target = ALIGN(mem->start, align);	for (res = reserved; res; res = res->sibling) {		if ((target + size) <= res->start)			break;		if (target <= res->end)			target = ALIGN(res->end + 1, align);	}	if ((target + size) > (mem->end + 1))		return mem->end + 1;	return target;}static int __initalloc_reserved_region(resource_size_t *start, resource_size_t size,		      resource_size_t align, const char *name){	struct resource *mem;	resource_size_t target;	int ret;	for (mem = system_ram; mem; mem = mem->sibling) {		target = find_free_region(mem, size, align);		if (target <= mem->end) {			ret = add_reserved_region(target, target + size - 1,						  name);			if (!ret)				*start = target;			return ret;		}	}	return -ENOMEM;}/* * Early framebuffer allocation. Works as follows: *   - If fbmem_size is zero, nothing will be allocated or reserved. *   - If fbmem_start is zero when setup_bootmem() is called, *     a block of fbmem_size bytes will be reserved before bootmem *     initialization. It will be aligned to the largest page size *     that fbmem_size is a multiple of. *   - If fbmem_start is nonzero, an area of size fbmem_size will be *     reserved at the physical address fbmem_start if possible. If *     it collides with other reserved memory, a different block of *     same size will be allocated, just as if fbmem_start was zero. * * Board-specific code may use these variables to set up platform data * for the framebuffer driver if fbmem_size is nonzero. */resource_size_t __initdata fbmem_start;resource_size_t __initdata fbmem_size;/* * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for * use as framebuffer. * * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and * starting at yyy to be reserved for use as framebuffer. * * The kernel won't verify that the memory region starting at yyy * actually contains usable RAM. */static int __init early_parse_fbmem(char *p){	int ret;	unsigned long align;	fbmem_size = memparse(p, &p);	if (*p == '@') {		fbmem_start = memparse(p + 1, &p);		ret = add_reserved_region(fbmem_start,					  fbmem_start + fbmem_size - 1,					  "Framebuffer");		if (ret) {			printk(KERN_WARNING			       "Failed to reserve framebuffer memory\n");			fbmem_start = 0;		}	}	if (!fbmem_start) {		if ((fbmem_size & 0x000fffffUL) == 0)			align = 0x100000;	/* 1 MiB */		else if ((fbmem_size & 0x0000ffffUL) == 0)			align = 0x10000;	/* 64 KiB */		else			align = 0x1000;		/* 4 KiB */		ret = alloc_reserved_region(&fbmem_start, fbmem_size,					    align, "Framebuffer");		if (ret) {			printk(KERN_WARNING			       "Failed to allocate framebuffer memory\n");			fbmem_size = 0;		}	}	return 0;}early_param("fbmem", early_parse_fbmem);static int __init parse_tag_core(struct tag *tag){	if (tag->hdr.size > 2) {		if ((tag->u.core.flags & 1) == 0)			root_mountflags &= ~MS_RDONLY;		ROOT_DEV = new_decode_dev(tag->u.core.rootdev);	}	return 0;}__tagtable(ATAG_CORE, parse_tag_core);static int __init parse_tag_mem(struct tag *tag){	unsigned long start, end;	/*	 * Ignore zero-sized entries. If we're running standalone, the	 * SDRAM code may emit such entries if something goes	 * wrong...	 */	if (tag->u.mem_range.size == 0)		return 0;	start = tag->u.mem_range.addr;	end = tag->u.mem_range.addr + tag->u.mem_range.size - 1;	add_physical_memory(start, end);	return 0;}__tagtable(ATAG_MEM, parse_tag_mem);static int __init parse_tag_rdimg(struct tag *tag){#ifdef CONFIG_BLK_DEV_INITRD	struct tag_mem_range *mem = &tag->u.mem_range;	int ret;	if (initrd_start) {		printk(KERN_WARNING		       "Warning: Only the first initrd image will be used\n");		return 0;	}	ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1,				  "initrd");	if (ret) {		printk(KERN_WARNING		       "Warning: Failed to reserve initrd memory\n");		return ret;	}	initrd_start = (unsigned long)__va(mem->addr);	initrd_end = initrd_start + mem->size;#else	printk(KERN_WARNING "RAM disk image present, but "	       "no initrd support in kernel, ignoring\n");#endif	return 0;}__tagtable(ATAG_RDIMG, parse_tag_rdimg);static int __init parse_tag_rsvd_mem(struct tag *tag){	struct tag_mem_range *mem = &tag->u.mem_range;	return add_reserved_region(mem->addr, mem->addr + mem->size - 1,				   "Reserved");}__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);static int __init parse_tag_cmdline(struct tag *tag){	strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);	return 0;}__tagtable(ATAG_CMDLINE, parse_tag_cmdline);static int __init parse_tag_clock(struct tag *tag){	/*	 * We'll figure out the clocks by peeking at the system	 * manager regs directly.	 */	return 0;}__tagtable(ATAG_CLOCK, parse_tag_clock);/* * Scan the tag table for this tag, and call its parse function. The * tag table is built by the linker from all the __tagtable * declarations. */static int __init parse_tag(struct tag *tag){	extern struct tagtable __tagtable_begin, __tagtable_end;	struct tagtable *t;	for (t = &__tagtable_begin; t < &__tagtable_end; t++)		if (tag->hdr.tag == t->tag) {			t->parse(tag);			break;		}	return t < &__tagtable_end;}/* * Parse all tags in the list we got from the boot loader */static void __init parse_tags(struct tag *t){	for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))		if (!parse_tag(t))			printk(KERN_WARNING			       "Ignoring unrecognised tag 0x%08x\n",			       t->hdr.tag);}/* * Find a free memory region large enough for storing the * bootmem bitmap. */static unsigned long __initfind_bootmap_pfn(const struct resource *mem){	unsigned long bootmap_pages, bootmap_len;	unsigned long node_pages = PFN_UP(mem->end - mem->start + 1);	unsigned long bootmap_start;	bootmap_pages = bootmem_bootmap_pages(node_pages);	bootmap_len = bootmap_pages << PAGE_SHIFT;	/*	 * Find a large enough region without reserved pages for	 * storing the bootmem bitmap. We can take advantage of the	 * fact that all lists have been sorted.	 *	 * We have to check that we don't collide with any reserved	 * regions, which includes the kernel image and any RAMDISK	 * images.	 */	bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE);	return bootmap_start >> PAGE_SHIFT;}#define MAX_LOWMEM	HIGHMEM_START#define MAX_LOWMEM_PFN	PFN_DOWN(MAX_LOWMEM)static void __init setup_bootmem(void){	unsigned bootmap_size;	unsigned long first_pfn, bootmap_pfn, pages;	unsigned long max_pfn, max_low_pfn;	unsigned node = 0;	struct resource *res;	printk(KERN_INFO "Physical memory:\n");	for (res = system_ram; res; res = res->sibling)		printk("  %08x-%08x\n", res->start, res->end);	printk(KERN_INFO "Reserved memory:\n");	for (res = reserved; res; res = res->sibling)		printk("  %08x-%08x: %s\n",		       res->start, res->end, res->name);	nodes_clear(node_online_map);	if (system_ram->sibling)		printk(KERN_WARNING "Only using first memory bank\n");	for (res = system_ram; res; res = NULL) {		first_pfn = PFN_UP(res->start);		max_low_pfn = max_pfn = PFN_DOWN(res->end + 1);		bootmap_pfn = find_bootmap_pfn(res);		if (bootmap_pfn > max_pfn)			panic("No space for bootmem bitmap!\n");		if (max_low_pfn > MAX_LOWMEM_PFN) {			max_low_pfn = MAX_LOWMEM_PFN;#ifndef CONFIG_HIGHMEM			/*			 * Lowmem is memory that can be addressed			 * directly through P1/P2			 */			printk(KERN_WARNING			       "Node %u: Only %ld MiB of memory will be used.\n",			       node, MAX_LOWMEM >> 20);			printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");#else#error HIGHMEM is not supported by AVR32 yet#endif		}		/* Initialize the boot-time allocator with low memory only. */		bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,						 first_pfn, max_low_pfn);		/*		 * Register fully available RAM pages with the bootmem		 * allocator.		 */		pages = max_low_pfn - first_pfn;		free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),				   PFN_PHYS(pages));		/* Reserve space for the bootmem bitmap... */		reserve_bootmem_node(NODE_DATA(node),				     PFN_PHYS(bootmap_pfn),				     bootmap_size);		/* ...and any other reserved regions. */		for (res = reserved; res; res = res->sibling) {			if (res->start > PFN_PHYS(max_pfn))				break;			/*			 * resource_init will complain about partial			 * overlaps, so we'll just ignore such			 * resources for now.			 */			if (res->start >= PFN_PHYS(first_pfn)			    && res->end < PFN_PHYS(max_pfn))				reserve_bootmem_node(					NODE_DATA(node), res->start,					res->end - res->start + 1);		}		node_set_online(node);	}}void __init setup_arch (char **cmdline_p){	struct clk *cpu_clk;	init_mm.start_code = (unsigned long)_text;	init_mm.end_code = (unsigned long)_etext;	init_mm.end_data = (unsigned long)_edata;	init_mm.brk = (unsigned long)_end;	/*	 * Include .init section to make allocations easier. It will	 * be removed before the resource is actually requested.	 */	kernel_code.start = __pa(__init_begin);	kernel_code.end = __pa(init_mm.end_code - 1);	kernel_data.start = __pa(init_mm.end_code);	kernel_data.end = __pa(init_mm.brk - 1);	parse_tags(bootloader_tags);	setup_processor();	setup_platform();	setup_board();	cpu_clk = clk_get(NULL, "cpu");	if (IS_ERR(cpu_clk)) {		printk(KERN_WARNING "Warning: Unable to get CPU clock\n");	} else {		unsigned long cpu_hz = clk_get_rate(cpu_clk);		/*		 * Well, duh, but it's probably a good idea to		 * increment the use count.		 */		clk_enable(cpu_clk);		boot_cpu_data.clk = cpu_clk;		boot_cpu_data.loops_per_jiffy = cpu_hz * 4;		printk("CPU: Running at %lu.%03lu MHz\n",		       ((cpu_hz + 500) / 1000) / 1000,		       ((cpu_hz + 500) / 1000) % 1000);	}	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);	*cmdline_p = command_line;	parse_early_param();	setup_bootmem();#ifdef CONFIG_VT	conswitchp = &dummy_con;#endif	paging_init();	resource_init();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -