⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 acpi-cpufreq.c

📁 linux 内核源代码
💻 C
字号:
/* * arch/ia64/kernel/cpufreq/acpi-cpufreq.c * This file provides the ACPI based P-state support. This * module works with generic cpufreq infrastructure. Most of * the code is based on i386 version * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c) * * Copyright (C) 2005 Intel Corp *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> */#include <linux/kernel.h>#include <linux/module.h>#include <linux/init.h>#include <linux/cpufreq.h>#include <linux/proc_fs.h>#include <linux/seq_file.h>#include <asm/io.h>#include <asm/uaccess.h>#include <asm/pal.h>#include <linux/acpi.h>#include <acpi/processor.h>#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)MODULE_AUTHOR("Venkatesh Pallipadi");MODULE_DESCRIPTION("ACPI Processor P-States Driver");MODULE_LICENSE("GPL");struct cpufreq_acpi_io {	struct acpi_processor_performance	acpi_data;	struct cpufreq_frequency_table		*freq_table;	unsigned int				resume;};static struct cpufreq_acpi_io	*acpi_io_data[NR_CPUS];static struct cpufreq_driver acpi_cpufreq_driver;static intprocessor_set_pstate (	u32	value){	s64 retval;	dprintk("processor_set_pstate\n");	retval = ia64_pal_set_pstate((u64)value);	if (retval) {		dprintk("Failed to set freq to 0x%x, with error 0x%x\n",		        value, retval);		return -ENODEV;	}	return (int)retval;}static intprocessor_get_pstate (	u32	*value){	u64	pstate_index = 0;	s64 	retval;	dprintk("processor_get_pstate\n");	retval = ia64_pal_get_pstate(&pstate_index,	                             PAL_GET_PSTATE_TYPE_INSTANT);	*value = (u32) pstate_index;	if (retval)		dprintk("Failed to get current freq with "		        "error 0x%x, idx 0x%x\n", retval, *value);	return (int)retval;}/* To be used only after data->acpi_data is initialized */static unsignedextract_clock (	struct cpufreq_acpi_io *data,	unsigned value,	unsigned int cpu){	unsigned long i;	dprintk("extract_clock\n");	for (i = 0; i < data->acpi_data.state_count; i++) {		if (value == data->acpi_data.states[i].status)			return data->acpi_data.states[i].core_frequency;	}	return data->acpi_data.states[i-1].core_frequency;}static unsigned intprocessor_get_freq (	struct cpufreq_acpi_io	*data,	unsigned int		cpu){	int			ret = 0;	u32			value = 0;	cpumask_t		saved_mask;	unsigned long 		clock_freq;	dprintk("processor_get_freq\n");	saved_mask = current->cpus_allowed;	set_cpus_allowed(current, cpumask_of_cpu(cpu));	if (smp_processor_id() != cpu)		goto migrate_end;	/* processor_get_pstate gets the instantaneous frequency */	ret = processor_get_pstate(&value);	if (ret) {		set_cpus_allowed(current, saved_mask);		printk(KERN_WARNING "get performance failed with error %d\n",		       ret);		ret = 0;		goto migrate_end;	}	clock_freq = extract_clock(data, value, cpu);	ret = (clock_freq*1000);migrate_end:	set_cpus_allowed(current, saved_mask);	return ret;}static intprocessor_set_freq (	struct cpufreq_acpi_io	*data,	unsigned int		cpu,	int			state){	int			ret = 0;	u32			value = 0;	struct cpufreq_freqs    cpufreq_freqs;	cpumask_t		saved_mask;	int			retval;	dprintk("processor_set_freq\n");	saved_mask = current->cpus_allowed;	set_cpus_allowed(current, cpumask_of_cpu(cpu));	if (smp_processor_id() != cpu) {		retval = -EAGAIN;		goto migrate_end;	}	if (state == data->acpi_data.state) {		if (unlikely(data->resume)) {			dprintk("Called after resume, resetting to P%d\n", state);			data->resume = 0;		} else {			dprintk("Already at target state (P%d)\n", state);			retval = 0;			goto migrate_end;		}	}	dprintk("Transitioning from P%d to P%d\n",		data->acpi_data.state, state);	/* cpufreq frequency struct */	cpufreq_freqs.cpu = cpu;	cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;	cpufreq_freqs.new = data->freq_table[state].frequency;	/* notify cpufreq */	cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);	/*	 * First we write the target state's 'control' value to the	 * control_register.	 */	value = (u32) data->acpi_data.states[state].control;	dprintk("Transitioning to state: 0x%08x\n", value);	ret = processor_set_pstate(value);	if (ret) {		unsigned int tmp = cpufreq_freqs.new;		cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);		cpufreq_freqs.new = cpufreq_freqs.old;		cpufreq_freqs.old = tmp;		cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);		cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);		printk(KERN_WARNING "Transition failed with error %d\n", ret);		retval = -ENODEV;		goto migrate_end;	}	cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);	data->acpi_data.state = state;	retval = 0;migrate_end:	set_cpus_allowed(current, saved_mask);	return (retval);}static unsigned intacpi_cpufreq_get (	unsigned int		cpu){	struct cpufreq_acpi_io *data = acpi_io_data[cpu];	dprintk("acpi_cpufreq_get\n");	return processor_get_freq(data, cpu);}static intacpi_cpufreq_target (	struct cpufreq_policy   *policy,	unsigned int target_freq,	unsigned int relation){	struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];	unsigned int next_state = 0;	unsigned int result = 0;	dprintk("acpi_cpufreq_setpolicy\n");	result = cpufreq_frequency_table_target(policy,			data->freq_table, target_freq, relation, &next_state);	if (result)		return (result);	result = processor_set_freq(data, policy->cpu, next_state);	return (result);}static intacpi_cpufreq_verify (	struct cpufreq_policy   *policy){	unsigned int result = 0;	struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];	dprintk("acpi_cpufreq_verify\n");	result = cpufreq_frequency_table_verify(policy,			data->freq_table);	return (result);}static intacpi_cpufreq_cpu_init (	struct cpufreq_policy   *policy){	unsigned int		i;	unsigned int		cpu = policy->cpu;	struct cpufreq_acpi_io	*data;	unsigned int		result = 0;	dprintk("acpi_cpufreq_cpu_init\n");	data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);	if (!data)		return (-ENOMEM);	acpi_io_data[cpu] = data;	result = acpi_processor_register_performance(&data->acpi_data, cpu);	if (result)		goto err_free;	/* capability check */	if (data->acpi_data.state_count <= 1) {		dprintk("No P-States\n");		result = -ENODEV;		goto err_unreg;	}	if ((data->acpi_data.control_register.space_id !=					ACPI_ADR_SPACE_FIXED_HARDWARE) ||	    (data->acpi_data.status_register.space_id !=					ACPI_ADR_SPACE_FIXED_HARDWARE)) {		dprintk("Unsupported address space [%d, %d]\n",			(u32) (data->acpi_data.control_register.space_id),			(u32) (data->acpi_data.status_register.space_id));		result = -ENODEV;		goto err_unreg;	}	/* alloc freq_table */	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *	                           (data->acpi_data.state_count + 1),	                           GFP_KERNEL);	if (!data->freq_table) {		result = -ENOMEM;		goto err_unreg;	}	/* detect transition latency */	policy->cpuinfo.transition_latency = 0;	for (i=0; i<data->acpi_data.state_count; i++) {		if ((data->acpi_data.states[i].transition_latency * 1000) >		    policy->cpuinfo.transition_latency) {			policy->cpuinfo.transition_latency =			    data->acpi_data.states[i].transition_latency * 1000;		}	}	policy->cur = processor_get_freq(data, policy->cpu);	/* table init */	for (i = 0; i <= data->acpi_data.state_count; i++)	{		data->freq_table[i].index = i;		if (i < data->acpi_data.state_count) {			data->freq_table[i].frequency =			      data->acpi_data.states[i].core_frequency * 1000;		} else {			data->freq_table[i].frequency = CPUFREQ_TABLE_END;		}	}	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);	if (result) {		goto err_freqfree;	}	/* notify BIOS that we exist */	acpi_processor_notify_smm(THIS_MODULE);	printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "	       "activated.\n", cpu);	for (i = 0; i < data->acpi_data.state_count; i++)		dprintk("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",			(i == data->acpi_data.state?'*':' '), i,			(u32) data->acpi_data.states[i].core_frequency,			(u32) data->acpi_data.states[i].power,			(u32) data->acpi_data.states[i].transition_latency,			(u32) data->acpi_data.states[i].bus_master_latency,			(u32) data->acpi_data.states[i].status,			(u32) data->acpi_data.states[i].control);	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);	/* the first call to ->target() should result in us actually	 * writing something to the appropriate registers. */	data->resume = 1;	return (result); err_freqfree:	kfree(data->freq_table); err_unreg:	acpi_processor_unregister_performance(&data->acpi_data, cpu); err_free:	kfree(data);	acpi_io_data[cpu] = NULL;	return (result);}static intacpi_cpufreq_cpu_exit (	struct cpufreq_policy   *policy){	struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];	dprintk("acpi_cpufreq_cpu_exit\n");	if (data) {		cpufreq_frequency_table_put_attr(policy->cpu);		acpi_io_data[policy->cpu] = NULL;		acpi_processor_unregister_performance(&data->acpi_data,		                                      policy->cpu);		kfree(data);	}	return (0);}static struct freq_attr* acpi_cpufreq_attr[] = {	&cpufreq_freq_attr_scaling_available_freqs,	NULL,};static struct cpufreq_driver acpi_cpufreq_driver = {	.verify 	= acpi_cpufreq_verify,	.target 	= acpi_cpufreq_target,	.get 		= acpi_cpufreq_get,	.init		= acpi_cpufreq_cpu_init,	.exit		= acpi_cpufreq_cpu_exit,	.name		= "acpi-cpufreq",	.owner		= THIS_MODULE,	.attr           = acpi_cpufreq_attr,};static int __initacpi_cpufreq_init (void){	dprintk("acpi_cpufreq_init\n"); 	return cpufreq_register_driver(&acpi_cpufreq_driver);}static void __exitacpi_cpufreq_exit (void){	dprintk("acpi_cpufreq_exit\n");	cpufreq_unregister_driver(&acpi_cpufreq_driver);	return;}late_initcall(acpi_cpufreq_init);module_exit(acpi_cpufreq_exit);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -