⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 topology.c

📁 linux 内核源代码
💻 C
字号:
/* * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * This file contains NUMA specific variables and functions which can * be split away from DISCONTIGMEM and are used on NUMA machines with * contiguous memory. * 		2002/08/07 Erich Focht <efocht@ess.nec.de> * Populate cpu entries in sysfs for non-numa systems as well *  	Intel Corporation - Ashok Raj * 02/27/2006 Zhang, Yanmin *	Populate cpu cache entries in sysfs for cpu cache info */#include <linux/cpu.h>#include <linux/kernel.h>#include <linux/mm.h>#include <linux/node.h>#include <linux/init.h>#include <linux/bootmem.h>#include <linux/nodemask.h>#include <linux/notifier.h>#include <asm/mmzone.h>#include <asm/numa.h>#include <asm/cpu.h>static struct ia64_cpu *sysfs_cpus;int arch_register_cpu(int num){#if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)	/*	 * If CPEI can be re-targetted or if this is not	 * CPEI target, then it is hotpluggable	 */	if (can_cpei_retarget() || !is_cpu_cpei_target(num))		sysfs_cpus[num].cpu.hotpluggable = 1;	map_cpu_to_node(num, node_cpuid[num].nid);#endif	return register_cpu(&sysfs_cpus[num].cpu, num);}#ifdef CONFIG_HOTPLUG_CPUvoid arch_unregister_cpu(int num){	unregister_cpu(&sysfs_cpus[num].cpu);	unmap_cpu_from_node(num, cpu_to_node(num));}EXPORT_SYMBOL(arch_register_cpu);EXPORT_SYMBOL(arch_unregister_cpu);#endif /*CONFIG_HOTPLUG_CPU*/static int __init topology_init(void){	int i, err = 0;#ifdef CONFIG_NUMA	/*	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?	 */	for_each_online_node(i) {		if ((err = register_one_node(i)))			goto out;	}#endif	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);	if (!sysfs_cpus)		panic("kzalloc in topology_init failed - NR_CPUS too big?");	for_each_present_cpu(i) {		if((err = arch_register_cpu(i)))			goto out;	}out:	return err;}subsys_initcall(topology_init);/* * Export cpu cache information through sysfs *//* *  A bunch of string array to get pretty printing */static const char *cache_types[] = {	"",			/* not used */	"Instruction",	"Data",	"Unified"	/* unified */};static const char *cache_mattrib[]={	"WriteThrough",	"WriteBack",	"",		/* reserved */	""		/* reserved */};struct cache_info {	pal_cache_config_info_t	cci;	cpumask_t shared_cpu_map;	int level;	int type;	struct kobject kobj;};struct cpu_cache_info {	struct cache_info *cache_leaves;	int	num_cache_leaves;	struct kobject kobj;};static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS] __cpuinitdata;#define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])#ifdef CONFIG_SMPstatic void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,		struct cache_info * this_leaf){	pal_cache_shared_info_t	csi;	int num_shared, i = 0;	unsigned int j;	if (cpu_data(cpu)->threads_per_core <= 1 &&		cpu_data(cpu)->cores_per_socket <= 1) {		cpu_set(cpu, this_leaf->shared_cpu_map);		return;	}	if (ia64_pal_cache_shared_info(this_leaf->level,					this_leaf->type,					0,					&csi) != PAL_STATUS_SUCCESS)		return;	num_shared = (int) csi.num_shared;	do {		for_each_possible_cpu(j)			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id				&& cpu_data(j)->core_id == csi.log1_cid				&& cpu_data(j)->thread_id == csi.log1_tid)				cpu_set(j, this_leaf->shared_cpu_map);		i++;	} while (i < num_shared &&		ia64_pal_cache_shared_info(this_leaf->level,				this_leaf->type,				i,				&csi) == PAL_STATUS_SUCCESS);}#elsestatic void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,		struct cache_info * this_leaf){	cpu_set(cpu, this_leaf->shared_cpu_map);	return;}#endifstatic ssize_t show_coherency_line_size(struct cache_info *this_leaf,					char *buf){	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);}static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,					char *buf){	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);}static ssize_t show_attributes(struct cache_info *this_leaf, char *buf){	return sprintf(buf,			"%s\n",			cache_mattrib[this_leaf->cci.pcci_cache_attr]);}static ssize_t show_size(struct cache_info *this_leaf, char *buf){	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);}static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf){	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;	number_of_sets /= this_leaf->cci.pcci_assoc;	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;	return sprintf(buf, "%u\n", number_of_sets);}static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf){	ssize_t	len;	cpumask_t shared_cpu_map;	cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);	len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);	len += sprintf(buf+len, "\n");	return len;}static ssize_t show_type(struct cache_info *this_leaf, char *buf){	int type = this_leaf->type + this_leaf->cci.pcci_unified;	return sprintf(buf, "%s\n", cache_types[type]);}static ssize_t show_level(struct cache_info *this_leaf, char *buf){	return sprintf(buf, "%u\n", this_leaf->level);}struct cache_attr {	struct attribute attr;	ssize_t (*show)(struct cache_info *, char *);	ssize_t (*store)(struct cache_info *, const char *, size_t count);};#ifdef define_one_ro	#undef define_one_ro#endif#define define_one_ro(_name) \	static struct cache_attr _name = \__ATTR(_name, 0444, show_##_name, NULL)define_one_ro(level);define_one_ro(type);define_one_ro(coherency_line_size);define_one_ro(ways_of_associativity);define_one_ro(size);define_one_ro(number_of_sets);define_one_ro(shared_cpu_map);define_one_ro(attributes);static struct attribute * cache_default_attrs[] = {	&type.attr,	&level.attr,	&coherency_line_size.attr,	&ways_of_associativity.attr,	&attributes.attr,	&size.attr,	&number_of_sets.attr,	&shared_cpu_map.attr,	NULL};#define to_object(k) container_of(k, struct cache_info, kobj)#define to_attr(a) container_of(a, struct cache_attr, attr)static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf){	struct cache_attr *fattr = to_attr(attr);	struct cache_info *this_leaf = to_object(kobj);	ssize_t ret;	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;	return ret;}static struct sysfs_ops cache_sysfs_ops = {	.show   = cache_show};static struct kobj_type cache_ktype = {	.sysfs_ops	= &cache_sysfs_ops,	.default_attrs	= cache_default_attrs,};static struct kobj_type cache_ktype_percpu_entry = {	.sysfs_ops	= &cache_sysfs_ops,};static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu){	kfree(all_cpu_cache_info[cpu].cache_leaves);	all_cpu_cache_info[cpu].cache_leaves = NULL;	all_cpu_cache_info[cpu].num_cache_leaves = 0;	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));	return;}static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu){	u64 i, levels, unique_caches;	pal_cache_config_info_t cci;	int j;	s64 status;	struct cache_info *this_cache;	int num_cache_leaves = 0;	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);		return -1;	}	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,			GFP_KERNEL);	if (this_cache == NULL)		return -ENOMEM;	for (i=0; i < levels; i++) {		for (j=2; j >0 ; j--) {			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=					PAL_STATUS_SUCCESS)				continue;			this_cache[num_cache_leaves].cci = cci;			this_cache[num_cache_leaves].level = i + 1;			this_cache[num_cache_leaves].type = j;			cache_shared_cpu_map_setup(cpu,					&this_cache[num_cache_leaves]);			num_cache_leaves ++;		}	}	all_cpu_cache_info[cpu].cache_leaves = this_cache;	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));	return 0;}/* Add cache interface for CPU device */static int __cpuinit cache_add_dev(struct sys_device * sys_dev){	unsigned int cpu = sys_dev->id;	unsigned long i, j;	struct cache_info *this_object;	int retval = 0;	cpumask_t oldmask;	if (all_cpu_cache_info[cpu].kobj.parent)		return 0;	oldmask = current->cpus_allowed;	retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));	if (unlikely(retval))		return retval;	retval = cpu_cache_sysfs_init(cpu);	set_cpus_allowed(current, oldmask);	if (unlikely(retval < 0))		return retval;	all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj;	kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache");	all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry;	retval = kobject_register(&all_cpu_cache_info[cpu].kobj);	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {		this_object = LEAF_KOBJECT_PTR(cpu,i);		this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj;		kobject_set_name(&(this_object->kobj), "index%1lu", i);		this_object->kobj.ktype = &cache_ktype;		retval = kobject_register(&(this_object->kobj));		if (unlikely(retval)) {			for (j = 0; j < i; j++) {				kobject_unregister(					&(LEAF_KOBJECT_PTR(cpu,j)->kobj));			}			kobject_unregister(&all_cpu_cache_info[cpu].kobj);			cpu_cache_sysfs_exit(cpu);			break;		}	}	return retval;}/* Remove cache interface for CPU device */static int __cpuinit cache_remove_dev(struct sys_device * sys_dev){	unsigned int cpu = sys_dev->id;	unsigned long i;	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)		kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));	if (all_cpu_cache_info[cpu].kobj.parent) {		kobject_unregister(&all_cpu_cache_info[cpu].kobj);		memset(&all_cpu_cache_info[cpu].kobj,			0,			sizeof(struct kobject));	}	cpu_cache_sysfs_exit(cpu);	return 0;}/* * When a cpu is hot-plugged, do a check and initiate * cache kobject if necessary */static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,		unsigned long action, void *hcpu){	unsigned int cpu = (unsigned long)hcpu;	struct sys_device *sys_dev;	sys_dev = get_cpu_sysdev(cpu);	switch (action) {	case CPU_ONLINE:	case CPU_ONLINE_FROZEN:		cache_add_dev(sys_dev);		break;	case CPU_DEAD:	case CPU_DEAD_FROZEN:		cache_remove_dev(sys_dev);		break;	}	return NOTIFY_OK;}static struct notifier_block __cpuinitdata cache_cpu_notifier ={	.notifier_call = cache_cpu_callback};static int __init cache_sysfs_init(void){	int i;	for_each_online_cpu(i) {		struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);		cache_add_dev(sys_dev);	}	register_hotcpu_notifier(&cache_cpu_notifier);	return 0;}device_initcall(cache_sysfs_init);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -