📄 setup.c
字号:
acpi_numa_init();# endif#else# ifdef CONFIG_SMP smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */# endif#endif /* CONFIG_APCI_BOOT */ find_memory(); /* process SAL system table: */ ia64_sal_init(__va(efi.sal_systab)); ia64_setup_printk_clock();#ifdef CONFIG_SMP cpu_physical_id(0) = hard_smp_processor_id();#endif cpu_init(); /* initialize the bootstrap CPU */ mmu_context_init(); /* initialize context_id bitmap */ check_sal_cache_flush();#ifdef CONFIG_ACPI acpi_boot_init();#endif#ifdef CONFIG_VT if (!conswitchp) {# if defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con;# endif# if defined(CONFIG_VGA_CONSOLE) /* * Non-legacy systems may route legacy VGA MMIO range to system * memory. vga_con probes the MMIO hole, so memory looks like * a VGA device to it. The EFI memory map can tell us if it's * memory so we can avoid this problem. */ if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY) conswitchp = &vga_con;# endif }#endif /* enable IA-64 Machine Check Abort Handling unless disabled */ if (!nomca) ia64_mca_init(); platform_setup(cmdline_p); paging_init();}/* * Display cpu info for all CPUs. */static intshow_cpuinfo (struct seq_file *m, void *v){#ifdef CONFIG_SMP# define lpj c->loops_per_jiffy# define cpunum c->cpu#else# define lpj loops_per_jiffy# define cpunum 0#endif static struct { unsigned long mask; const char *feature_name; } feature_bits[] = { { 1UL << 0, "branchlong" }, { 1UL << 1, "spontaneous deferral"}, { 1UL << 2, "16-byte atomic ops" } }; char features[128], *cp, *sep; struct cpuinfo_ia64 *c = v; unsigned long mask; unsigned long proc_freq; int i, size; mask = c->features; /* build the feature string: */ memcpy(features, "standard", 9); cp = features; size = sizeof(features); sep = ""; for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) { if (mask & feature_bits[i].mask) { cp += snprintf(cp, size, "%s%s", sep, feature_bits[i].feature_name), sep = ", "; mask &= ~feature_bits[i].mask; size = sizeof(features) - (cp - features); } } if (mask && size > 1) { /* print unknown features as a hex value */ snprintf(cp, size, "%s0x%lx", sep, mask); } proc_freq = cpufreq_quick_get(cpunum); if (!proc_freq) proc_freq = c->proc_freq / 1000; seq_printf(m, "processor : %d\n" "vendor : %s\n" "arch : IA-64\n" "family : %u\n" "model : %u\n" "model name : %s\n" "revision : %u\n" "archrev : %u\n" "features : %s\n" "cpu number : %lu\n" "cpu regs : %u\n" "cpu MHz : %lu.%03lu\n" "itc MHz : %lu.%06lu\n" "BogoMIPS : %lu.%02lu\n", cpunum, c->vendor, c->family, c->model, c->model_name, c->revision, c->archrev, features, c->ppn, c->number, proc_freq / 1000, proc_freq % 1000, c->itc_freq / 1000000, c->itc_freq % 1000000, lpj*HZ/500000, (lpj*HZ/5000) % 100);#ifdef CONFIG_SMP seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum])); if (c->socket_id != -1) seq_printf(m, "physical id: %u\n", c->socket_id); if (c->threads_per_core > 1 || c->cores_per_socket > 1) seq_printf(m, "core id : %u\n" "thread id : %u\n", c->core_id, c->thread_id);#endif seq_printf(m,"\n"); return 0;}static void *c_start (struct seq_file *m, loff_t *pos){#ifdef CONFIG_SMP while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map)) ++*pos;#endif return *pos < NR_CPUS ? cpu_data(*pos) : NULL;}static void *c_next (struct seq_file *m, void *v, loff_t *pos){ ++*pos; return c_start(m, pos);}static voidc_stop (struct seq_file *m, void *v){}struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo};#define MAX_BRANDS 8static char brandname[MAX_BRANDS][128];static char * __cpuinitget_model_name(__u8 family, __u8 model){ static int overflow; char brand[128]; int i; memcpy(brand, "Unknown", 8); if (ia64_pal_get_brand_info(brand)) { if (family == 0x7) memcpy(brand, "Merced", 7); else if (family == 0x1f) switch (model) { case 0: memcpy(brand, "McKinley", 9); break; case 1: memcpy(brand, "Madison", 8); break; case 2: memcpy(brand, "Madison up to 9M cache", 23); break; } } for (i = 0; i < MAX_BRANDS; i++) if (strcmp(brandname[i], brand) == 0) return brandname[i]; for (i = 0; i < MAX_BRANDS; i++) if (brandname[i][0] == '\0') return strcpy(brandname[i], brand); if (overflow++ == 0) printk(KERN_ERR "%s: Table overflow. Some processor model information will be missing\n", __FUNCTION__); return "Unknown";}static void __cpuinitidentify_cpu (struct cpuinfo_ia64 *c){ union { unsigned long bits[5]; struct { /* id 0 & 1: */ char vendor[16]; /* id 2 */ u64 ppn; /* processor serial number */ /* id 3: */ unsigned number : 8; unsigned revision : 8; unsigned model : 8; unsigned family : 8; unsigned archrev : 8; unsigned reserved : 24; /* id 4: */ u64 features; } field; } cpuid; pal_vm_info_1_u_t vm1; pal_vm_info_2_u_t vm2; pal_status_t status; unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */ int i; for (i = 0; i < 5; ++i) cpuid.bits[i] = ia64_get_cpuid(i); memcpy(c->vendor, cpuid.field.vendor, 16);#ifdef CONFIG_SMP c->cpu = smp_processor_id(); /* below default values will be overwritten by identify_siblings() * for Multi-Threading/Multi-Core capable CPUs */ c->threads_per_core = c->cores_per_socket = c->num_log = 1; c->socket_id = -1; identify_siblings(c); if (c->threads_per_core > smp_num_siblings) smp_num_siblings = c->threads_per_core;#endif c->ppn = cpuid.field.ppn; c->number = cpuid.field.number; c->revision = cpuid.field.revision; c->model = cpuid.field.model; c->family = cpuid.field.family; c->archrev = cpuid.field.archrev; c->features = cpuid.field.features; c->model_name = get_model_name(c->family, c->model); status = ia64_pal_vm_summary(&vm1, &vm2); if (status == PAL_STATUS_SUCCESS) { impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb; phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size; } c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1)); c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));}void __initsetup_per_cpu_areas (void){ /* start_kernel() requires this... */#ifdef CONFIG_ACPI_HOTPLUG_CPU prefill_possible_map();#endif}/* * Calculate the max. cache line size. * * In addition, the minimum of the i-cache stride sizes is calculated for * "flush_icache_range()". */static void __cpuinitget_max_cacheline_size (void){ unsigned long line_size, max = 1; u64 l, levels, unique_caches; pal_cache_config_info_t cci; s64 status; status = ia64_pal_cache_summary(&levels, &unique_caches); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n", __FUNCTION__, status); max = SMP_CACHE_BYTES; /* Safest setup for "flush_icache_range()" */ ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT; goto out; } for (l = 0; l < levels; ++l) { status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2, &cci); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n", __FUNCTION__, l, status); max = SMP_CACHE_BYTES; /* The safest setup for "flush_icache_range()" */ cci.pcci_stride = I_CACHE_STRIDE_SHIFT; cci.pcci_unified = 1; } line_size = 1 << cci.pcci_line_size; if (line_size > max) max = line_size; if (!cci.pcci_unified) { status = ia64_pal_cache_config_info(l, /* cache_type (instruction)= */ 1, &cci); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n", __FUNCTION__, l, status); /* The safest setup for "flush_icache_range()" */ cci.pcci_stride = I_CACHE_STRIDE_SHIFT; } } if (cci.pcci_stride < ia64_i_cache_stride_shift) ia64_i_cache_stride_shift = cci.pcci_stride; } out: if (max > ia64_max_cacheline_size) ia64_max_cacheline_size = max;}/* * cpu_init() initializes state that is per-CPU. This function acts * as a 'CPU state barrier', nothing should get across. */void __cpuinitcpu_init (void){ extern void __cpuinit ia64_mmu_init (void *); static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG; unsigned long num_phys_stacked; pal_vm_info_2_u_t vmi; unsigned int max_ctx; struct cpuinfo_ia64 *cpu_info; void *cpu_data; cpu_data = per_cpu_init();#ifdef CONFIG_SMP /* * insert boot cpu into sibling and core mapes * (must be done after per_cpu area is setup) */ if (smp_processor_id() == 0) { cpu_set(0, per_cpu(cpu_sibling_map, 0)); cpu_set(0, cpu_core_map[0]); }#endif /* * We set ar.k3 so that assembly code in MCA handler can compute * physical addresses of per cpu variables with a simple: * phys = ar.k3 + &per_cpu_var */ ia64_set_kr(IA64_KR_PER_CPU_DATA, ia64_tpa(cpu_data) - (long) __per_cpu_start); get_max_cacheline_size(); /* * We can't pass "local_cpu_data" to identify_cpu() because we haven't called * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it * depends on the data returned by identify_cpu(). We break the dependency by * accessing cpu_data() through the canonical per-CPU address. */ cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start); identify_cpu(cpu_info);#ifdef CONFIG_MCKINLEY {# define FEATURE_SET 16 struct ia64_pal_retval iprv; if (cpu_info->family == 0x1f) { PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0); if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80)) PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, (iprv.v1 | 0x80), FEATURE_SET, 0); } }#endif /* Clear the stack memory reserved for pt_regs: */ memset(task_pt_regs(current), 0, sizeof(struct pt_regs)); ia64_set_kr(IA64_KR_FPU_OWNER, 0); /* * Initialize the page-table base register to a global * directory with all zeroes. This ensure that we can handle * TLB-misses to user address-space even before we created the * first user address-space. This may happen, e.g., due to * aggressive use of lfetch.fault. */ ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page))); /* * Initialize default control register to defer speculative faults except * for those arising from TLB misses, which are not deferred. The * kernel MUST NOT depend on a particular setting of these bits (in other words, * the kernel must have recovery code for all speculative accesses). Turn on * dcr.lc as per recommendation by the architecture team. Most IA-32 apps * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll * be fine). */ ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC)); atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; if (current->mm) BUG(); ia64_mmu_init(ia64_imva(cpu_data)); ia64_mca_cpu_init(ia64_imva(cpu_data));#ifdef CONFIG_IA32_SUPPORT ia32_cpu_init();#endif /* Clear ITC to eliminate sched_clock() overflows in human time. */ ia64_set_itc(0); /* disable all local interrupt sources: */ ia64_set_itv(1 << 16); ia64_set_lrr0(1 << 16); ia64_set_lrr1(1 << 16); ia64_setreg(_IA64_REG_CR_PMV, 1 << 16); ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16); /* clear TPR & XTP to enable all interrupt classes: */ ia64_setreg(_IA64_REG_CR_TPR, 0); /* Clear any pending interrupts left by SAL/EFI */ while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR) ia64_eoi();#ifdef CONFIG_SMP normal_xtp();#endif /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */ if (ia64_pal_vm_summary(NULL, &vmi) == 0) max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1; else { printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n"); max_ctx = (1U << 15) - 1; /* use architected minimum */ } while (max_ctx < ia64_ctx.max_ctx) { unsigned int old = ia64_ctx.max_ctx; if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old) break; } if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) { printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical " "stacked regs\n"); num_phys_stacked = 96; } /* size of physical stacked register partition plus 8 bytes: */ if (num_phys_stacked > max_num_phys_stacked) { ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8); max_num_phys_stacked = num_phys_stacked; } platform_cpu_init(); pm_idle = default_idle;}void __initcheck_bugs (void){ ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles, (unsigned long) __end___mckinley_e9_bundles);}static int __init run_dmi_scan(void){ dmi_scan_machine(); return 0;}core_initcall(run_dmi_scan);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -