📄 sn2_smp.c
字号:
/* * SN2 Platform specific SMP Support * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved. */#include <linux/init.h>#include <linux/kernel.h>#include <linux/spinlock.h>#include <linux/threads.h>#include <linux/sched.h>#include <linux/smp.h>#include <linux/interrupt.h>#include <linux/irq.h>#include <linux/mmzone.h>#include <linux/module.h>#include <linux/bitops.h>#include <linux/nodemask.h>#include <linux/proc_fs.h>#include <linux/seq_file.h>#include <asm/processor.h>#include <asm/irq.h>#include <asm/sal.h>#include <asm/system.h>#include <asm/delay.h>#include <asm/io.h>#include <asm/smp.h>#include <asm/tlb.h>#include <asm/numa.h>#include <asm/hw_irq.h>#include <asm/current.h>#include <asm/sn/sn_cpuid.h>#include <asm/sn/sn_sal.h>#include <asm/sn/addrs.h>#include <asm/sn/shub_mmr.h>#include <asm/sn/nodepda.h>#include <asm/sn/rw_mmr.h>#include <asm/sn/sn_feature_sets.h>DEFINE_PER_CPU(struct ptc_stats, ptcstats);DECLARE_PER_CPU(struct ptc_stats, ptcstats);static __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);/* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */static int sn2_flush_opt = 0;extern unsigned longsn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long, volatile unsigned long *, unsigned long, volatile unsigned long *, unsigned long);voidsn2_ptc_deadlock_recovery(short *, short, short, int, volatile unsigned long *, unsigned long, volatile unsigned long *, unsigned long);/* * Note: some is the following is captured here to make degugging easier * (the macros make more sense if you see the debug patch - not posted) */#define sn2_ptctest 0#define local_node_uses_ptc_ga(sh1) ((sh1) ? 1 : 0)#define max_active_pio(sh1) ((sh1) ? 32 : 7)#define reset_max_active_on_deadlock() 1#define PTC_LOCK(sh1) ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)struct ptc_stats { unsigned long ptc_l; unsigned long change_rid; unsigned long shub_ptc_flushes; unsigned long nodes_flushed; unsigned long deadlocks; unsigned long deadlocks2; unsigned long lock_itc_clocks; unsigned long shub_itc_clocks; unsigned long shub_itc_clocks_max; unsigned long shub_ptc_flushes_not_my_mm; unsigned long shub_ipi_flushes; unsigned long shub_ipi_flushes_itc_clocks;};#define sn2_ptctest 0static inline unsigned long wait_piowc(void){ volatile unsigned long *piows; unsigned long zeroval, ws; piows = pda->pio_write_status_addr; zeroval = pda->pio_write_status_val; do { cpu_relax(); } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval); return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;}/** * sn_migrate - SN-specific task migration actions * @task: Task being migrated to new CPU * * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order. * Context switching user threads which have memory-mapped MMIO may cause * PIOs to issue from separate CPUs, thus the PIO writes must be drained * from the previous CPU's Shub before execution resumes on the new CPU. */void sn_migrate(struct task_struct *task){ pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu); volatile unsigned long *adr = last_pda->pio_write_status_addr; unsigned long val = last_pda->pio_write_status_val; /* Drain PIO writes from old CPU's Shub */ while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != val)) cpu_relax();}void sn_tlb_migrate_finish(struct mm_struct *mm){ /* flush_tlb_mm is inefficient if more than 1 users of mm */ if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1) flush_tlb_mm(mm);}static voidsn2_ipi_flush_all_tlb(struct mm_struct *mm){ unsigned long itc; itc = ia64_get_itc(); smp_flush_tlb_cpumask(mm->cpu_vm_mask); itc = ia64_get_itc() - itc; __get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc; __get_cpu_var(ptcstats).shub_ipi_flushes++;}/** * sn2_global_tlb_purge - globally purge translation cache of virtual address range * @mm: mm_struct containing virtual address range * @start: start of virtual address range * @end: end of virtual address range * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc)) * * Purges the translation caches of all processors of the given virtual address * range. * * Note: * - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context. * - cpu_vm_mask is converted into a nodemask of the nodes containing the * cpus in cpu_vm_mask. * - if only one bit is set in cpu_vm_mask & it is the current cpu & the * process is purging its own virtual address range, then only the * local TLB needs to be flushed. This flushing can be done using * ptc.l. This is the common case & avoids the global spinlock. * - if multiple cpus have loaded the context, then flushing has to be * done with ptc.g/MMRs under protection of the global ptc_lock. */voidsn2_global_tlb_purge(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long nbits){ int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid; int mymm = (mm == current->active_mm && mm == current->mm); int use_cpu_ptcga; volatile unsigned long *ptc0, *ptc1; unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0; short nasids[MAX_NUMNODES], nix; nodemask_t nodes_flushed; int active, max_active, deadlock, flush_opt = sn2_flush_opt; if (flush_opt > 2) { sn2_ipi_flush_all_tlb(mm); return; } nodes_clear(nodes_flushed); i = 0; for_each_cpu_mask(cpu, mm->cpu_vm_mask) { cnode = cpu_to_node(cpu); node_set(cnode, nodes_flushed); lcpu = cpu; i++; } if (i == 0) return; preempt_disable(); if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) { do { ia64_ptcl(start, nbits << 2); start += (1UL << nbits); } while (start < end); ia64_srlz_i(); __get_cpu_var(ptcstats).ptc_l++; preempt_enable(); return; } if (atomic_read(&mm->mm_users) == 1 && mymm) { flush_tlb_mm(mm); __get_cpu_var(ptcstats).change_rid++; preempt_enable(); return; } if (flush_opt == 2) { sn2_ipi_flush_all_tlb(mm); preempt_enable(); return; } itc = ia64_get_itc(); nix = 0; for_each_node_mask(cnode, nodes_flushed) nasids[nix++] = cnodeid_to_nasid(cnode); rr_value = (mm->context << 3) | REGION_NUMBER(start); shub1 = is_shub1(); if (shub1) { data0 = (1UL << SH1_PTC_0_A_SHFT) | (nbits << SH1_PTC_0_PS_SHFT) | (rr_value << SH1_PTC_0_RID_SHFT) | (1UL << SH1_PTC_0_START_SHFT); ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0); ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1); } else { data0 = (1UL << SH2_PTC_A_SHFT) | (nbits << SH2_PTC_PS_SHFT) | (1UL << SH2_PTC_START_SHFT); ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + (rr_value << SH2_PTC_RID_SHFT)); ptc1 = NULL; } mynasid = get_nasid(); use_cpu_ptcga = local_node_uses_ptc_ga(shub1); max_active = max_active_pio(shub1); itc = ia64_get_itc(); spin_lock_irqsave(PTC_LOCK(shub1), flags); itc2 = ia64_get_itc(); __get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc; __get_cpu_var(ptcstats).shub_ptc_flushes++; __get_cpu_var(ptcstats).nodes_flushed += nix; if (!mymm) __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++; if (use_cpu_ptcga && !mymm) { old_rr = ia64_get_rr(start); ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8)); ia64_srlz_d(); } wait_piowc(); do { if (shub1) data1 = start | (1UL << SH1_PTC_1_START_SHFT); else data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK); deadlock = 0; active = 0; for (ibegin = 0, i = 0; i < nix; i++) { nasid = nasids[i]; if (use_cpu_ptcga && unlikely(nasid == mynasid)) { ia64_ptcga(start, nbits << 2); ia64_srlz_i(); } else { ptc0 = CHANGE_NASID(nasid, ptc0); if (ptc1) ptc1 = CHANGE_NASID(nasid, ptc1); pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1); active++; } if (active >= max_active || i == (nix - 1)) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -