⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 init.c

📁 linux 内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Initialize MMU support. * * Copyright (C) 1998-2003 Hewlett-Packard Co *	David Mosberger-Tang <davidm@hpl.hp.com> */#include <linux/kernel.h>#include <linux/init.h>#include <linux/bootmem.h>#include <linux/efi.h>#include <linux/elf.h>#include <linux/mm.h>#include <linux/mmzone.h>#include <linux/module.h>#include <linux/personality.h>#include <linux/reboot.h>#include <linux/slab.h>#include <linux/swap.h>#include <linux/proc_fs.h>#include <linux/bitops.h>#include <linux/kexec.h>#include <asm/a.out.h>#include <asm/dma.h>#include <asm/ia32.h>#include <asm/io.h>#include <asm/machvec.h>#include <asm/numa.h>#include <asm/patch.h>#include <asm/pgalloc.h>#include <asm/sal.h>#include <asm/sections.h>#include <asm/system.h>#include <asm/tlb.h>#include <asm/uaccess.h>#include <asm/unistd.h>#include <asm/mca.h>DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);extern void ia64_tlb_init (void);unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;#ifdef CONFIG_VIRTUAL_MEM_MAPunsigned long vmalloc_end = VMALLOC_END_INIT;EXPORT_SYMBOL(vmalloc_end);struct page *vmem_map;EXPORT_SYMBOL(vmem_map);#endifstruct page *zero_page_memmap_ptr;	/* map entry for zero page */EXPORT_SYMBOL(zero_page_memmap_ptr);void__ia64_sync_icache_dcache (pte_t pte){	unsigned long addr;	struct page *page;	unsigned long order;	page = pte_page(pte);	addr = (unsigned long) page_address(page);	if (test_bit(PG_arch_1, &page->flags))		return;				/* i-cache is already coherent with d-cache */	if (PageCompound(page)) {		order = compound_order(page);		flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));	}	else		flush_icache_range(addr, addr + PAGE_SIZE);	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */}/* * Since DMA is i-cache coherent, any (complete) pages that were written via * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to * flush them when they get mapped into an executable vm-area. */voiddma_mark_clean(void *addr, size_t size){	unsigned long pg_addr, end;	pg_addr = PAGE_ALIGN((unsigned long) addr);	end = (unsigned long) addr + size;	while (pg_addr + PAGE_SIZE <= end) {		struct page *page = virt_to_page(pg_addr);		set_bit(PG_arch_1, &page->flags);		pg_addr += PAGE_SIZE;	}}inline voidia64_set_rbs_bot (void){	unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;	if (stack_size > MAX_USER_STACK_SIZE)		stack_size = MAX_USER_STACK_SIZE;	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);}/* * This performs some platform-dependent address space initialization. * On IA-64, we want to setup the VM area for the register backing * store (which grows upwards) and install the gateway page which is * used for signal trampolines, etc. */voidia64_init_addr_space (void){	struct vm_area_struct *vma;	ia64_set_rbs_bot();	/*	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore	 * the problem.  When the process attempts to write to the register backing store	 * for the first time, it will get a SEGFAULT in this case.	 */	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);	if (vma) {		vma->vm_mm = current->mm;		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;		vma->vm_end = vma->vm_start + PAGE_SIZE;		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);		down_write(&current->mm->mmap_sem);		if (insert_vm_struct(current->mm, vma)) {			up_write(&current->mm->mmap_sem);			kmem_cache_free(vm_area_cachep, vma);			return;		}		up_write(&current->mm->mmap_sem);	}	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */	if (!(current->personality & MMAP_PAGE_ZERO)) {		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);		if (vma) {			vma->vm_mm = current->mm;			vma->vm_end = PAGE_SIZE;			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;			down_write(&current->mm->mmap_sem);			if (insert_vm_struct(current->mm, vma)) {				up_write(&current->mm->mmap_sem);				kmem_cache_free(vm_area_cachep, vma);				return;			}			up_write(&current->mm->mmap_sem);		}	}}voidfree_initmem (void){	unsigned long addr, eaddr;	addr = (unsigned long) ia64_imva(__init_begin);	eaddr = (unsigned long) ia64_imva(__init_end);	while (addr < eaddr) {		ClearPageReserved(virt_to_page(addr));		init_page_count(virt_to_page(addr));		free_page(addr);		++totalram_pages;		addr += PAGE_SIZE;	}	printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",	       (__init_end - __init_begin) >> 10);}void __initfree_initrd_mem (unsigned long start, unsigned long end){	struct page *page;	/*	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.	 * Thus EFI and the kernel may have different page sizes. It is	 * therefore possible to have the initrd share the same page as	 * the end of the kernel (given current setup).	 *	 * To avoid freeing/using the wrong page (kernel sized) we:	 *	- align up the beginning of initrd	 *	- align down the end of initrd	 *	 *  |             |	 *  |=============| a000	 *  |             |	 *  |             |	 *  |             | 9000	 *  |/////////////|	 *  |/////////////|	 *  |=============| 8000	 *  |///INITRD////|	 *  |/////////////|	 *  |/////////////| 7000	 *  |             |	 *  |KKKKKKKKKKKKK|	 *  |=============| 6000	 *  |KKKKKKKKKKKKK|	 *  |KKKKKKKKKKKKK|	 *  K=kernel using 8KB pages	 *	 * In this example, we must free page 8000 ONLY. So we must align up	 * initrd_start and keep initrd_end as is.	 */	start = PAGE_ALIGN(start);	end = end & PAGE_MASK;	if (start < end)		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);	for (; start < end; start += PAGE_SIZE) {		if (!virt_addr_valid(start))			continue;		page = virt_to_page(start);		ClearPageReserved(page);		init_page_count(page);		free_page(start);		++totalram_pages;	}}/* * This installs a clean page in the kernel's page table. */static struct page * __initput_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot){	pgd_t *pgd;	pud_t *pud;	pmd_t *pmd;	pte_t *pte;	if (!PageReserved(page))		printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",		       page_address(page));	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */	{		pud = pud_alloc(&init_mm, pgd, address);		if (!pud)			goto out;		pmd = pmd_alloc(&init_mm, pud, address);		if (!pmd)			goto out;		pte = pte_alloc_kernel(pmd, address);		if (!pte)			goto out;		if (!pte_none(*pte))			goto out;		set_pte(pte, mk_pte(page, pgprot));	}  out:	/* no need for flush_tlb */	return page;}static void __initsetup_gate (void){	struct page *page;	/*	 * Map the gate page twice: once read-only to export the ELF	 * headers etc. and once execute-only page to enable	 * privilege-promotion via "epc":	 */	page = virt_to_page(ia64_imva(__start_gate_section));	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);#ifdef HAVE_BUGGY_SEGREL	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);#else	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);	/* Fill in the holes (if any) with read-only zero pages: */	{		unsigned long addr;		for (addr = GATE_ADDR + PAGE_SIZE;		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;		     addr += PAGE_SIZE)		{			put_kernel_page(ZERO_PAGE(0), addr,					PAGE_READONLY);			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,					PAGE_READONLY);		}	}#endif	ia64_patch_gate();}void __devinitia64_mmu_init (void *my_cpu_data){	unsigned long pta, impl_va_bits;	extern void __devinit tlb_init (void);#ifdef CONFIG_DISABLE_VHPT#	define VHPT_ENABLE_BIT	0#else#	define VHPT_ENABLE_BIT	1#endif	/*	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped	 * address space.  The IA-64 architecture guarantees that at least 50 bits of	 * virtual address space are implemented but if we pick a large enough page size	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a	 * problem in practice.  Alternatively, we could truncate the top of the mapped	 * address space to not permit mappings that would overlap with the VMLPT.	 * --davidm 00/12/06	 */#	define pte_bits			3#	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)	/*	 * The virtual page table has to cover the entire implemented address space within	 * a region even though not all of this space may be mappable.  The reason for	 * this is that the Access bit and Dirty bit fault handlers perform	 * non-speculative accesses to the virtual page table, so the address range of the	 * virtual page table itself needs to be covered by virtual page table.	 */#	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)#	define POW2(n)			(1ULL << (n))	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));	if (impl_va_bits < 51 || impl_va_bits > 61)		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);	/*	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of	 * the test makes sure that our mapped space doesn't overlap the	 * unimplemented hole in the middle of the region.	 */	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||	    (mapped_space_bits > impl_va_bits - 1))		panic("Cannot build a big enough virtual-linear page table"		      " to cover mapped address space.\n"		      " Try using a smaller page size.\n");	/* place the VMLPT at the end of each page-table mapped region: */	pta = POW2(61) - POW2(vmlpt_bits);	/*	 * Set the (virtually mapped linear) page table address.  Bit	 * 8 selects between the short and long format, bits 2-7 the	 * size of the table, and bit 0 whether the VHPT walker is	 * enabled.	 */	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);	ia64_tlb_init();#ifdef	CONFIG_HUGETLB_PAGE	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);	ia64_srlz_d();#endif}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -