⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 do_csum.s

📁 linux 内核源代码
💻 S
字号:
/* * * Optmized version of the standard do_csum() function * * Return: a 64bit quantity containing the 16bit Internet checksum * * Inputs: *	in0: address of buffer to checksum (char *) *	in1: length of the buffer (int) * * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co *	Stephane Eranian <eranian@hpl.hp.com> * * 02/04/22	Ken Chen <kenneth.w.chen@intel.com> *		Data locality study on the checksum buffer. *		More optimization cleanup - remove excessive stop bits. * 02/04/08	David Mosberger <davidm@hpl.hp.com> *		More cleanup and tuning. * 01/04/18	Jun Nakajima <jun.nakajima@intel.com> *		Clean up and optimize and the software pipeline, loading two *		back-to-back 8-byte words per loop. Clean up the initialization *		for the loop. Support the cases where load latency = 1 or 2. *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default). */#include <asm/asmmacro.h>//// Theory of operations://	The goal is to go as quickly as possible to the point where//	we can checksum 16 bytes/loop. Before reaching that point we must//	take care of incorrect alignment of first byte.////	The code hereafter also takes care of the "tail" part of the buffer//	before entering the core loop, if any. The checksum is a sum so it//	allows us to commute operations. So we do the "head" and "tail"//	first to finish at full speed in the body. Once we get the head and//	tail values, we feed them into the pipeline, very handy initialization.////	Of course we deal with the special case where the whole buffer fits//	into one 8 byte word. In this case we have only one entry in the pipeline.////	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for//	possible load latency and also to accommodate for head and tail.////	The end of the function deals with folding the checksum from 64bits//	down to 16bits taking care of the carry.////	This version avoids synchronization in the core loop by also using a//	pipeline for the accumulation of the checksum in resultx[] (x=1,2).////	 wordx[] (x=1,2)//	|---|//      |   | 0			: new value loaded in pipeline//	|---|//      |   | -			: in transit data//	|---|//      |   | LOAD_LATENCY	: current value to add to checksum//	|---|//      |   | LOAD_LATENCY+1	: previous value added to checksum//      |---|			(previous iteration)////	resultx[] (x=1,2)//	|---|//      |   | 0			: initial value//	|---|//      |   | LOAD_LATENCY-1	: new checksum//	|---|//      |   | LOAD_LATENCY	: previous value of checksum//	|---|//      |   | LOAD_LATENCY+1	: final checksum when out of the loop//      |---|//////	See RFC1071 "Computing the Internet Checksum" for various techniques for//	calculating the Internet checksum.//// NOT YET DONE://	- Maybe another algorithm which would take care of the folding at the//	  end in a different manner//	- Work with people more knowledgeable than me on the network stack//	  to figure out if we could not split the function depending on the//	  type of packet or alignment we get. Like the ip_fast_csum() routine//	  where we know we have at least 20bytes worth of data to checksum.//	- Do a better job of handling small packets.//	- Note on prefetching: it was found that under various load, i.e. ftp read/write,//	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%//	  on the data that buffer points to (partly because the checksum is often preceded by//	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since//	  the data is already in the cache.//#define saved_pfs	r11#define hmask		r16#define tmask		r17#define first1		r18#define firstval	r19#define firstoff	r20#define last		r21#define lastval		r22#define lastoff		r23#define saved_lc	r24#define saved_pr	r25#define tmp1		r26#define tmp2		r27#define tmp3		r28#define carry1		r29#define carry2		r30#define first2		r31#define buf		in0#define len		in1#define LOAD_LATENCY	2	// XXX fix me#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."#endif#define PIPE_DEPTH			(LOAD_LATENCY+2)#define ELD	p[LOAD_LATENCY]		// end of load#define ELD_1	p[LOAD_LATENCY+1]	// and next stage// unsigned long do_csum(unsigned char *buf,long len)GLOBAL_ENTRY(do_csum)	.prologue	.save ar.pfs, saved_pfs	alloc saved_pfs=ar.pfs,2,16,0,16	.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]	.rotp p[PIPE_DEPTH], pC1[2], pC2[2]	mov ret0=r0		// in case we have zero length	cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len)	;;	add tmp1=buf,len	// last byte's address	.save pr, saved_pr	mov saved_pr=pr		// preserve predicates (rotation)(p6)	br.ret.spnt.many rp	// return if zero or negative length	mov hmask=-1		// initialize head mask	tbit.nz p15,p0=buf,0	// is buf an odd address?	and first1=-8,buf	// 8-byte align down address of first1 element	and firstoff=7,buf	// how many bytes off for first1 element	mov tmask=-1		// initialize tail mask	;;	adds tmp2=-1,tmp1	// last-1	and lastoff=7,tmp1	// how many bytes off for last element	;;	sub tmp1=8,lastoff	// complement to lastoff	and last=-8,tmp2	// address of word containing last byte	;;	sub tmp3=last,first1	// tmp3=distance from first1 to last	.save ar.lc, saved_lc	mov saved_lc=ar.lc	// save lc	cmp.eq p8,p9=last,first1	// everything fits in one word ?	ld8 firstval=[first1],8	// load, ahead of time, "first1" word	and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0	shl tmp2=firstoff,3	// number of bits	;;(p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed	shl tmp1=tmp1,3		// number of bits(p9)	adds tmp3=-8,tmp3	// effectively loaded	;;(p8)	mov lastval=r0		// we don't need lastval if first1==last	shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[	shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff]	;;	.body#define count tmp3(p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only(p9)	and word2[0]=lastval,tmask	// mask last it as appropriate	shr.u count=count,3	// how many 8-byte?	;;	// If count is odd, finish this 8-byte word so that we can	// load two back-to-back 8-byte words per loop thereafter.	and word1[0]=firstval,hmask	// and mask it as appropriate	tbit.nz p10,p11=count,0		// if (count is odd)	;;(p8)	mov result1[0]=word1[0](p9)	add result1[0]=word1[0],word2[0]	;;	cmp.ltu p6,p0=result1[0],word1[0]	// check the carry	cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte	;;(p6)	adds result1[0]=1,result1[0](p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word)(p11)	br.cond.dptk .do_csum16		// if (count is even)	// Here count is odd.	ld8 word1[1]=[first1],8		// load an 8-byte word	cmp.eq p9,p10=1,count		// if (count == 1)	adds count=-1,count		// loaded an 8-byte word	;;	add result1[0]=result1[0],word1[1]	;;	cmp.ltu p6,p0=result1[0],word1[1]	;;(p6)	adds result1[0]=1,result1[0](p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit	// Fall through to caluculate the checksum, feeding result1[0] as	// the initial value in result1[0].	//	// Calculate the checksum loading two 8-byte words per loop.	//.do_csum16:	add first2=8,first1	shr.u count=count,1	// we do 16 bytes per loop	;;	adds count=-1,count	mov carry1=r0	mov carry2=r0	brp.loop.imp 1f,2f	;;	mov ar.ec=PIPE_DEPTH	mov ar.lc=count	// set lc	mov pr.rot=1<<16	// result1[0] must be initialized in advance.	mov result2[0]=r0	;;	.align 321:(ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1](pC1[1])adds carry1=1,carry1(ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1](pC2[1])adds carry2=1,carry2(ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY](ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]2:(p[0])	ld8 word1[0]=[first1],16(p[0])	ld8 word2[0]=[first2],16	br.ctop.sptk 1b	;;	// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.(pC1[1])adds carry1=1,carry1	// since we miss the last one(pC2[1])adds carry2=1,carry2	;;	add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1	add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2	;;	cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1	cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2	;;(p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1](p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]	;;	add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]	;;	cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]	;;(p6)	adds result1[0]=1,result1[0]	;;.do_csum_exit:	//	// now fold 64 into 16 bits taking care of carry	// that's not very good because it has lots of sequentiality	//	mov tmp3=0xffff	zxt4 tmp1=result1[0]	shr.u tmp2=result1[0],32	;;	add result1[0]=tmp1,tmp2	;;	and tmp1=result1[0],tmp3	shr.u tmp2=result1[0],16	;;	add result1[0]=tmp1,tmp2	;;	and tmp1=result1[0],tmp3	shr.u tmp2=result1[0],16	;;	add result1[0]=tmp1,tmp2	;;	and tmp1=result1[0],tmp3	shr.u tmp2=result1[0],16	;;	add ret0=tmp1,tmp2	mov pr=saved_pr,0xffffffffffff0000	;;	// if buf was odd then swap bytes	mov ar.pfs=saved_pfs		// restore ar.ec(p15)	mux1 ret0=ret0,@rev		// reverse word	;;	mov ar.lc=saved_lc(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes	br.ret.sptk.many rp//	I (Jun Nakajima) wrote an equivalent code (see below), but it was//	not much better than the original. So keep the original there so that//	someone else can challenge.////	shr.u word1[0]=result1[0],32//	zxt4 result1[0]=result1[0]//	;;//	add result1[0]=result1[0],word1[0]//	;;//	zxt2 result2[0]=result1[0]//	extr.u word1[0]=result1[0],16,16//	shr.u carry1=result1[0],32//	;;//	add result2[0]=result2[0],word1[0]//	;;//	add result2[0]=result2[0],carry1//	;;//	extr.u ret0=result2[0],16,16//	;;//	add ret0=ret0,result2[0]//	;;//	zxt2 ret0=ret0//	mov ar.pfs=saved_pfs		 // restore ar.ec//	mov pr=saved_pr,0xffffffffffff0000//	;;//	// if buf was odd then swap bytes//	mov ar.lc=saved_lc//(p15)	mux1 ret0=ret0,@rev		// reverse word//	;;//(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes//	br.ret.sptk.many rpEND(do_csum)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -