📄 enlighten.c
字号:
/* * Core of Xen paravirt_ops implementation. * * This file contains the xen_paravirt_ops structure itself, and the * implementations for: * - privileged instructions * - interrupt flags * - segment operations * - booting and setup * * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 */#include <linux/kernel.h>#include <linux/init.h>#include <linux/smp.h>#include <linux/preempt.h>#include <linux/hardirq.h>#include <linux/percpu.h>#include <linux/delay.h>#include <linux/start_kernel.h>#include <linux/sched.h>#include <linux/bootmem.h>#include <linux/module.h>#include <linux/mm.h>#include <linux/page-flags.h>#include <linux/highmem.h>#include <xen/interface/xen.h>#include <xen/interface/physdev.h>#include <xen/interface/vcpu.h>#include <xen/interface/sched.h>#include <xen/features.h>#include <xen/page.h>#include <asm/paravirt.h>#include <asm/page.h>#include <asm/xen/hypercall.h>#include <asm/xen/hypervisor.h>#include <asm/fixmap.h>#include <asm/processor.h>#include <asm/setup.h>#include <asm/desc.h>#include <asm/pgtable.h>#include <asm/tlbflush.h>#include <asm/reboot.h>#include "xen-ops.h"#include "mmu.h"#include "multicalls.h"EXPORT_SYMBOL_GPL(hypercall_page);DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);/* * Note about cr3 (pagetable base) values: * * xen_cr3 contains the current logical cr3 value; it contains the * last set cr3. This may not be the current effective cr3, because * its update may be being lazily deferred. However, a vcpu looking * at its own cr3 can use this value knowing that it everything will * be self-consistent. * * xen_current_cr3 contains the actual vcpu cr3; it is set once the * hypercall to set the vcpu cr3 is complete (so it may be a little * out of date, but it will never be set early). If one vcpu is * looking at another vcpu's cr3 value, it should use this variable. */DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */struct start_info *xen_start_info;EXPORT_SYMBOL_GPL(xen_start_info);static /* __initdata */ struct shared_info dummy_shared_info;/* * Point at some empty memory to start with. We map the real shared_info * page as soon as fixmap is up and running. */struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;/* * Flag to determine whether vcpu info placement is available on all * VCPUs. We assume it is to start with, and then set it to zero on * the first failure. This is because it can succeed on some VCPUs * and not others, since it can involve hypervisor memory allocation, * or because the guest failed to guarantee all the appropriate * constraints on all VCPUs (ie buffer can't cross a page boundary). * * Note that any particular CPU may be using a placed vcpu structure, * but we can only optimise if the all are. * * 0: not available, 1: available */static int have_vcpu_info_placement = 0;static void __init xen_vcpu_setup(int cpu){ struct vcpu_register_vcpu_info info; int err; struct vcpu_info *vcpup; per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; if (!have_vcpu_info_placement) return; /* already tested, not available */ vcpup = &per_cpu(xen_vcpu_info, cpu); info.mfn = virt_to_mfn(vcpup); info.offset = offset_in_page(vcpup); printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n", cpu, vcpup, info.mfn, info.offset); /* Check to see if the hypervisor will put the vcpu_info structure where we want it, which allows direct access via a percpu-variable. */ err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); if (err) { printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); have_vcpu_info_placement = 0; } else { /* This cpu is using the registered vcpu info, even if later ones fail to. */ per_cpu(xen_vcpu, cpu) = vcpup; printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n", cpu, vcpup); }}static void __init xen_banner(void){ printk(KERN_INFO "Booting paravirtualized kernel on %s\n", pv_info.name); printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);}static void xen_cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx){ unsigned maskedx = ~0; /* * Mask out inconvenient features, to try and disable as many * unsupported kernel subsystems as possible. */ if (*eax == 1) maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */ (1 << X86_FEATURE_ACPI) | /* disable ACPI */ (1 << X86_FEATURE_ACC)); /* thermal monitoring */ asm(XEN_EMULATE_PREFIX "cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "0" (*eax), "2" (*ecx)); *edx &= maskedx;}static void xen_set_debugreg(int reg, unsigned long val){ HYPERVISOR_set_debugreg(reg, val);}static unsigned long xen_get_debugreg(int reg){ return HYPERVISOR_get_debugreg(reg);}static unsigned long xen_save_fl(void){ struct vcpu_info *vcpu; unsigned long flags; vcpu = x86_read_percpu(xen_vcpu); /* flag has opposite sense of mask */ flags = !vcpu->evtchn_upcall_mask; /* convert to IF type flag -0 -> 0x00000000 -1 -> 0xffffffff */ return (-flags) & X86_EFLAGS_IF;}static void xen_restore_fl(unsigned long flags){ struct vcpu_info *vcpu; /* convert from IF type flag */ flags = !(flags & X86_EFLAGS_IF); /* There's a one instruction preempt window here. We need to make sure we're don't switch CPUs between getting the vcpu pointer and updating the mask. */ preempt_disable(); vcpu = x86_read_percpu(xen_vcpu); vcpu->evtchn_upcall_mask = flags; preempt_enable_no_resched(); /* Doesn't matter if we get preempted here, because any pending event will get dealt with anyway. */ if (flags == 0) { preempt_check_resched(); barrier(); /* unmask then check (avoid races) */ if (unlikely(vcpu->evtchn_upcall_pending)) force_evtchn_callback(); }}static void xen_irq_disable(void){ /* There's a one instruction preempt window here. We need to make sure we're don't switch CPUs between getting the vcpu pointer and updating the mask. */ preempt_disable(); x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1; preempt_enable_no_resched();}static void xen_irq_enable(void){ struct vcpu_info *vcpu; /* There's a one instruction preempt window here. We need to make sure we're don't switch CPUs between getting the vcpu pointer and updating the mask. */ preempt_disable(); vcpu = x86_read_percpu(xen_vcpu); vcpu->evtchn_upcall_mask = 0; preempt_enable_no_resched(); /* Doesn't matter if we get preempted here, because any pending event will get dealt with anyway. */ barrier(); /* unmask then check (avoid races) */ if (unlikely(vcpu->evtchn_upcall_pending)) force_evtchn_callback();}static void xen_safe_halt(void){ /* Blocking includes an implicit local_irq_enable(). */ if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0) BUG();}static void xen_halt(void){ if (irqs_disabled()) HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL); else xen_safe_halt();}static void xen_leave_lazy(void){ paravirt_leave_lazy(paravirt_get_lazy_mode()); xen_mc_flush();}static unsigned long xen_store_tr(void){ return 0;}static void xen_set_ldt(const void *addr, unsigned entries){ unsigned long linear_addr = (unsigned long)addr; struct mmuext_op *op; struct multicall_space mcs = xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = MMUEXT_SET_LDT; if (linear_addr) { /* ldt my be vmalloced, use arbitrary_virt_to_machine */ xmaddr_t maddr; maddr = arbitrary_virt_to_machine((unsigned long)addr); linear_addr = (unsigned long)maddr.maddr; } op->arg1.linear_addr = linear_addr; op->arg2.nr_ents = entries; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_CPU);}static void xen_load_gdt(const struct Xgt_desc_struct *dtr){ unsigned long *frames; unsigned long va = dtr->address; unsigned int size = dtr->size + 1; unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; int f; struct multicall_space mcs; /* A GDT can be up to 64k in size, which corresponds to 8192 8-byte entries, or 16 4k pages.. */ BUG_ON(size > 65536); BUG_ON(va & ~PAGE_MASK); mcs = xen_mc_entry(sizeof(*frames) * pages); frames = mcs.args; for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { frames[f] = virt_to_mfn(va); make_lowmem_page_readonly((void *)va); } MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct)); xen_mc_issue(PARAVIRT_LAZY_CPU);}static void load_TLS_descriptor(struct thread_struct *t, unsigned int cpu, unsigned int i){ struct desc_struct *gdt = get_cpu_gdt_table(cpu); xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); struct multicall_space mc = __xen_mc_entry(0); MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);}static void xen_load_tls(struct thread_struct *t, unsigned int cpu){ xen_mc_batch(); load_TLS_descriptor(t, cpu, 0); load_TLS_descriptor(t, cpu, 1); load_TLS_descriptor(t, cpu, 2); xen_mc_issue(PARAVIRT_LAZY_CPU); /* * XXX sleazy hack: If we're being called in a lazy-cpu zone, * it means we're in a context switch, and %gs has just been * saved. This means we can zero it out to prevent faults on * exit from the hypervisor if the next process has no %gs. * Either way, it has been saved, and the new value will get * loaded properly. This will go away as soon as Xen has been * modified to not save/restore %gs for normal hypercalls. */ if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) loadsegment(gs, 0);}static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, u32 low, u32 high){ unsigned long lp = (unsigned long)&dt[entrynum]; xmaddr_t mach_lp = virt_to_machine(lp); u64 entry = (u64)high << 32 | low; preempt_disable(); xen_mc_flush(); if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) BUG(); preempt_enable();}static int cvt_gate_to_trap(int vector, u32 low, u32 high, struct trap_info *info){ u8 type, dpl; type = (high >> 8) & 0x1f; dpl = (high >> 13) & 3; if (type != 0xf && type != 0xe) return 0; info->vector = vector; info->address = (high & 0xffff0000) | (low & 0x0000ffff); info->cs = low >> 16; info->flags = dpl; /* interrupt gates clear IF */ if (type == 0xe) info->flags |= 4; return 1;}/* Locations of each CPU's IDT */static DEFINE_PER_CPU(struct Xgt_desc_struct, idt_desc);/* Set an IDT entry. If the entry is part of the current IDT, then also update Xen. */static void xen_write_idt_entry(struct desc_struct *dt, int entrynum, u32 low, u32 high){ unsigned long p = (unsigned long)&dt[entrynum]; unsigned long start, end; preempt_disable(); start = __get_cpu_var(idt_desc).address; end = start + __get_cpu_var(idt_desc).size + 1; xen_mc_flush(); write_dt_entry(dt, entrynum, low, high); if (p >= start && (p + 8) <= end) { struct trap_info info[2]; info[1].address = 0; if (cvt_gate_to_trap(entrynum, low, high, &info[0])) if (HYPERVISOR_set_trap_table(info)) BUG(); } preempt_enable();}static void xen_convert_trap_info(const struct Xgt_desc_struct *desc, struct trap_info *traps){ unsigned in, out, count; count = (desc->size+1) / 8; BUG_ON(count > 256); for (in = out = 0; in < count; in++) { const u32 *entry = (u32 *)(desc->address + in * 8); if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out])) out++; } traps[out].address = 0;}void xen_copy_trap_info(struct trap_info *traps){ const struct Xgt_desc_struct *desc = &__get_cpu_var(idt_desc); xen_convert_trap_info(desc, traps);}/* Load a new IDT into Xen. In principle this can be per-CPU, so we hold a spinlock to protect the static traps[] array (static because it avoids allocation, and saves stack space). */static void xen_load_idt(const struct Xgt_desc_struct *desc){ static DEFINE_SPINLOCK(lock); static struct trap_info traps[257]; spin_lock(&lock); __get_cpu_var(idt_desc) = *desc; xen_convert_trap_info(desc, traps); xen_mc_flush(); if (HYPERVISOR_set_trap_table(traps)) BUG(); spin_unlock(&lock);}/* Write a GDT descriptor entry. Ignore LDT descriptors, since they're handled differently. */static void xen_write_gdt_entry(struct desc_struct *dt, int entry, u32 low, u32 high){ preempt_disable(); switch ((high >> 8) & 0xff) { case DESCTYPE_LDT: case DESCTYPE_TSS: /* ignore */ break; default: { xmaddr_t maddr = virt_to_machine(&dt[entry]); u64 desc = (u64)high << 32 | low; xen_mc_flush(); if (HYPERVISOR_update_descriptor(maddr.maddr, desc)) BUG(); } } preempt_enable();}static void xen_load_esp0(struct tss_struct *tss, struct thread_struct *thread){ struct multicall_space mcs = xen_mc_entry(0); MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->esp0); xen_mc_issue(PARAVIRT_LAZY_CPU);}static void xen_set_iopl_mask(unsigned mask){ struct physdev_set_iopl set_iopl; /* Force the change at ring 0. */ set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);}static void xen_io_delay(void){}#ifdef CONFIG_X86_LOCAL_APICstatic unsigned long xen_apic_read(unsigned long reg){ return 0;}static void xen_apic_write(unsigned long reg, unsigned long val){ /* Warn to see if there's any stray references */ WARN_ON(1);}#endifstatic void xen_flush_tlb(void){ struct mmuext_op *op; struct multicall_space mcs = xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = MMUEXT_TLB_FLUSH_LOCAL; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU);}static void xen_flush_tlb_single(unsigned long addr){ struct mmuext_op *op; struct multicall_space mcs = xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = MMUEXT_INVLPG_LOCAL; op->arg1.linear_addr = addr & PAGE_MASK; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU);}static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm, unsigned long va){ struct { struct mmuext_op op; cpumask_t mask; } *args; cpumask_t cpumask = *cpus; struct multicall_space mcs; /* * A couple of (to be removed) sanity checks: * * - current CPU must not be in mask * - mask must exist :) */ BUG_ON(cpus_empty(cpumask)); BUG_ON(cpu_isset(smp_processor_id(), cpumask)); BUG_ON(!mm); /* If a CPU which we ran on has gone down, OK. */ cpus_and(cpumask, cpumask, cpu_online_map); if (cpus_empty(cpumask)) return; mcs = xen_mc_entry(sizeof(*args)); args = mcs.args; args->mask = cpumask; args->op.arg2.vcpumask = &args->mask; if (va == TLB_FLUSH_ALL) { args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; } else { args->op.cmd = MMUEXT_INVLPG_MULTI; args->op.arg1.linear_addr = va; } MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -