📄 fpu_entry.c
字号:
/*---------------------------------------------------------------------------+ | fpu_entry.c | | | | The entry functions for wm-FPU-emu | | | | Copyright (C) 1992,1993,1994,1996,1997 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | | E-mail billm@suburbia.net | | | | See the files "README" and "COPYING" for further copyright and warranty | | information. | | | +---------------------------------------------------------------------------*//*---------------------------------------------------------------------------+ | Note: | | The file contains code which accesses user memory. | | Emulator static data may change when user memory is accessed, due to | | other processes using the emulator while swapping is in progress. | +---------------------------------------------------------------------------*//*---------------------------------------------------------------------------+ | math_emulate(), restore_i387_soft() and save_i387_soft() are the only | | entry points for wm-FPU-emu. | +---------------------------------------------------------------------------*/#include <linux/signal.h>#include <linux/ptrace.h>#include <asm/uaccess.h>#include <asm/desc.h>#include "fpu_system.h"#include "fpu_emu.h"#include "exception.h"#include "control_w.h"#include "status_w.h"#define __BAD__ FPU_illegal /* Illegal on an 80486, causes SIGILL */#ifndef NO_UNDOC_CODE /* Un-documented FPU op-codes supported by default. *//* WARNING: These codes are not documented by Intel in their 80486 manual and may not work on FPU clones or later Intel FPUs. *//* Changes to support the un-doc codes provided by Linus Torvalds. */#define _d9_d8_ fstp_i /* unofficial code (19) */#define _dc_d0_ fcom_st /* unofficial code (14) */#define _dc_d8_ fcompst /* unofficial code (1c) */#define _dd_c8_ fxch_i /* unofficial code (0d) */#define _de_d0_ fcompst /* unofficial code (16) */#define _df_c0_ ffreep /* unofficial code (07) ffree + pop */#define _df_c8_ fxch_i /* unofficial code (0f) */#define _df_d0_ fstp_i /* unofficial code (17) */#define _df_d8_ fstp_i /* unofficial code (1f) */static FUNC const st_instr_table[64] = { fadd__, fld_i_, __BAD__, __BAD__, fadd_i, ffree_, faddp_, _df_c0_, fmul__, fxch_i, __BAD__, __BAD__, fmul_i, _dd_c8_, fmulp_, _df_c8_, fcom_st, fp_nop, __BAD__, __BAD__, _dc_d0_, fst_i_, _de_d0_, _df_d0_, fcompst, _d9_d8_, __BAD__, __BAD__, _dc_d8_, fstp_i, fcompp, _df_d8_, fsub__, FPU_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_, fsubr_, fconst, fucompp, __BAD__, fsub_i, fucomp, fsubp_, __BAD__, fdiv__, FPU_triga, __BAD__, __BAD__, fdivri, __BAD__, fdivrp, __BAD__, fdivr_, FPU_trigb, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__,};#else /* Support only documented FPU op-codes */static FUNC const st_instr_table[64] = { fadd__, fld_i_, __BAD__, __BAD__, fadd_i, ffree_, faddp_, __BAD__, fmul__, fxch_i, __BAD__, __BAD__, fmul_i, __BAD__, fmulp_, __BAD__, fcom_st, fp_nop, __BAD__, __BAD__, __BAD__, fst_i_, __BAD__, __BAD__, fcompst, __BAD__, __BAD__, __BAD__, __BAD__, fstp_i, fcompp, __BAD__, fsub__, FPU_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_, fsubr_, fconst, fucompp, __BAD__, fsub_i, fucomp, fsubp_, __BAD__, fdiv__, FPU_triga, __BAD__, __BAD__, fdivri, __BAD__, fdivrp, __BAD__, fdivr_, FPU_trigb, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__,};#endif /* NO_UNDOC_CODE */#define _NONE_ 0 /* Take no special action */#define _REG0_ 1 /* Need to check for not empty st(0) */#define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */#define _REGi_ 0 /* Uses st(rm) */#define _PUSH_ 3 /* Need to check for space to push onto stack */#define _null_ 4 /* Function illegal or not implemented */#define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */#define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */#define _REGIc 0 /* Compare st(0) and st(rm) */#define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */#ifndef NO_UNDOC_CODE/* Un-documented FPU op-codes supported by default. (see above) */static u_char const type_table[64] = { _REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _REGi_, _REGI_, _REGIn, _null_, _null_, _REGIi, _REGI_, _REGIp, _REGI_, _REGIc, _NONE_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_, _REGIc, _REG0_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_, _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_, _REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_, _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_, _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_};#else /* Support only documented FPU op-codes */static u_char const type_table[64] = { _REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _null_, _REGI_, _REGIn, _null_, _null_, _REGIi, _null_, _REGIp, _null_, _REGIc, _NONE_, _null_, _null_, _null_, _REG0_, _null_, _null_, _REGIc, _null_, _null_, _null_, _null_, _REG0_, _REGIc, _null_, _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_, _REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_, _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_, _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_};#endif /* NO_UNDOC_CODE */#ifdef RE_ENTRANT_CHECKINGu_char emulating=0;#endif /* RE_ENTRANT_CHECKING */static int valid_prefix(u_char *Byte, u_char __user **fpu_eip, overrides *override);asmlinkage void math_emulate(long arg){ u_char FPU_modrm, byte1; unsigned short code; fpu_addr_modes addr_modes; int unmasked; FPU_REG loaded_data; FPU_REG *st0_ptr; u_char loaded_tag, st0_tag; void __user *data_address; struct address data_sel_off; struct address entry_sel_off; unsigned long code_base = 0; unsigned long code_limit = 0; /* Initialized to stop compiler warnings */ struct desc_struct code_descriptor;#ifdef RE_ENTRANT_CHECKING if ( emulating ) { printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n"); } RE_ENTRANT_CHECK_ON;#endif /* RE_ENTRANT_CHECKING */ if (!used_math()) { finit(); set_used_math(); } SETUP_DATA_AREA(arg); FPU_ORIG_EIP = FPU_EIP; if ( (FPU_EFLAGS & 0x00020000) != 0 ) { /* Virtual 8086 mode */ addr_modes.default_mode = VM86; FPU_EIP += code_base = FPU_CS << 4; code_limit = code_base + 0xffff; /* Assumes code_base <= 0xffff0000 */ } else if ( FPU_CS == __USER_CS && FPU_DS == __USER_DS ) { addr_modes.default_mode = 0; } else if ( FPU_CS == __KERNEL_CS ) { printk("math_emulate: %04x:%08lx\n",FPU_CS,FPU_EIP); panic("Math emulation needed in kernel"); } else { if ( (FPU_CS & 4) != 4 ) /* Must be in the LDT */ { /* Can only handle segmented addressing via the LDT for now, and it must be 16 bit */ printk("FPU emulator: Unsupported addressing mode\n"); math_abort(FPU_info, SIGILL); } code_descriptor = LDT_DESCRIPTOR(FPU_CS); if ( SEG_D_SIZE(code_descriptor) ) { /* The above test may be wrong, the book is not clear */ /* Segmented 32 bit protected mode */ addr_modes.default_mode = SEG32; } else { /* 16 bit protected mode */ addr_modes.default_mode = PM16; } FPU_EIP += code_base = SEG_BASE_ADDR(code_descriptor); code_limit = code_base + (SEG_LIMIT(code_descriptor)+1) * SEG_GRANULARITY(code_descriptor) - 1; if ( code_limit < code_base ) code_limit = 0xffffffff; } FPU_lookahead = 1; if (current->ptrace & PT_PTRACED) FPU_lookahead = 0; if ( !valid_prefix(&byte1, (u_char __user **)&FPU_EIP, &addr_modes.override) ) { RE_ENTRANT_CHECK_OFF; printk("FPU emulator: Unknown prefix byte 0x%02x, probably due to\n" "FPU emulator: self-modifying code! (emulation impossible)\n", byte1); RE_ENTRANT_CHECK_ON; EXCEPTION(EX_INTERNAL|0x126); math_abort(FPU_info,SIGILL); }do_another_FPU_instruction: no_ip_update = 0; FPU_EIP++; /* We have fetched the prefix and first code bytes. */ if ( addr_modes.default_mode ) { /* This checks for the minimum instruction bytes. We also need to check any extra (address mode) code access. */ if ( FPU_EIP > code_limit ) math_abort(FPU_info,SIGSEGV); } if ( (byte1 & 0xf8) != 0xd8 ) { if ( byte1 == FWAIT_OPCODE ) { if (partial_status & SW_Summary) goto do_the_FPU_interrupt; else goto FPU_fwait_done; }#ifdef PARANOID EXCEPTION(EX_INTERNAL|0x128); math_abort(FPU_info,SIGILL);#endif /* PARANOID */ } RE_ENTRANT_CHECK_OFF; FPU_code_access_ok(1); FPU_get_user(FPU_modrm, (u_char __user *) FPU_EIP); RE_ENTRANT_CHECK_ON; FPU_EIP++; if (partial_status & SW_Summary) { /* Ignore the error for now if the current instruction is a no-wait control instruction */ /* The 80486 manual contradicts itself on this topic, but a real 80486 uses the following instructions: fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex. */ code = (FPU_modrm << 8) | byte1; if ( ! ( (((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */ (((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv, fnstsw */ ((code & 0xc000) != 0xc000))) ) ) { /* * We need to simulate the action of the kernel to FPU * interrupts here. */ do_the_FPU_interrupt: FPU_EIP = FPU_ORIG_EIP; /* Point to current FPU instruction. */ RE_ENTRANT_CHECK_OFF; current->thread.trap_no = 16; current->thread.error_code = 0; send_sig(SIGFPE, current, 1); return; } } entry_sel_off.offset = FPU_ORIG_EIP; entry_sel_off.selector = FPU_CS; entry_sel_off.opcode = (byte1 << 8) | FPU_modrm; FPU_rm = FPU_modrm & 7; if ( FPU_modrm < 0300 ) { /* All of these instructions use the mod/rm byte to get a data address */ if ( (addr_modes.default_mode & SIXTEEN) ^ (addr_modes.override.address_size == ADDR_SIZE_PREFIX) ) data_address = FPU_get_address_16(FPU_modrm, &FPU_EIP, &data_sel_off, addr_modes); else data_address = FPU_get_address(FPU_modrm, &FPU_EIP, &data_sel_off, addr_modes); if ( addr_modes.default_mode ) { if ( FPU_EIP-1 > code_limit ) math_abort(FPU_info,SIGSEGV); } if ( !(byte1 & 1) ) { unsigned short status1 = partial_status; st0_ptr = &st(0); st0_tag = FPU_gettag0(); /* Stack underflow has priority */ if ( NOT_EMPTY_ST0 ) { if ( addr_modes.default_mode & PROTECTED ) { /* This table works for 16 and 32 bit protected mode */ if ( access_limit < data_sizes_16[(byte1 >> 1) & 3] ) math_abort(FPU_info,SIGSEGV); } unmasked = 0; /* Do this here to stop compiler warnings. */ switch ( (byte1 >> 1) & 3 ) { case 0: unmasked = FPU_load_single((float __user *)data_address, &loaded_data); loaded_tag = unmasked & 0xff; unmasked &= ~0xff; break; case 1: loaded_tag = FPU_load_int32((long __user *)data_address, &loaded_data); break; case 2: unmasked = FPU_load_double((double __user *)data_address, &loaded_data); loaded_tag = unmasked & 0xff; unmasked &= ~0xff; break; case 3: default: /* Used here to suppress gcc warnings. */ loaded_tag = FPU_load_int16((short __user *)data_address, &loaded_data); break; } /* No more access to user memory, it is safe to use static data now */ /* NaN operands have the next priority. */ /* We have to delay looking at st(0) until after loading the data, because that data might contain an SNaN */ if ( ((st0_tag == TAG_Special) && isNaN(st0_ptr)) || ((loaded_tag == TAG_Special) && isNaN(&loaded_data)) ) { /* Restore the status word; we might have loaded a denormal. */ partial_status = status1; if ( (FPU_modrm & 0x30) == 0x10 ) { /* fcom or fcomp */ EXCEPTION(EX_Invalid); setcc(SW_C3 | SW_C2 | SW_C0); if ( (FPU_modrm & 0x08) && (control_word & CW_Invalid) ) FPU_pop(); /* fcomp, masked, so we pop. */ } else {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -